Actin networks modulate heterogenous NF-κB dynamics in response to TNFα

  1. Francesca Butera  Is a corresponding author
  2. Julia E Sero
  3. Lucas G Dent  Is a corresponding author
  4. Chris Bakal  Is a corresponding author
  1. Institute of Cancer Research, United Kingdom
  2. University of Bath, United Kingdom

Abstract

The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.

Data availability

All data generated for this study have been included as source data files.

Article and author information

Author details

  1. Francesca Butera

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    frankie.butera@mcri.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6606-4678
  2. Julia E Sero

    Biology and Biochemistry Department, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas G Dent

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    lucas.dent@icr.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8573-4617
  4. Chris Bakal

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    cbakal@icr.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0413-6744

Funding

Cancer Research UK (S_3567)

  • Francesca Butera

Cancer Research UK supported by Stand Up to Cancer UK (C37275)

  • Chris Bakal

Cancer Research UK supported by Stand Up to Cancer UK (A20146)

  • Chris Bakal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John G Albeck, University of California, Davis, United States

Version history

  1. Received: January 8, 2023
  2. Accepted: August 5, 2024
  3. Accepted Manuscript published: August 7, 2024 (version 1)

Copyright

© 2024, Butera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesca Butera
  2. Julia E Sero
  3. Lucas G Dent
  4. Chris Bakal
(2024)
Actin networks modulate heterogenous NF-κB dynamics in response to TNFα
eLife 13:e86042.
https://doi.org/10.7554/eLife.86042

Share this article

https://doi.org/10.7554/eLife.86042

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.