Angelman Syndrome: How late is too late for treatment?
An approach called antisense oligonucleotide (ASO) therapy has ushered in a new age in genetic medicine. ASO therapy works by introducing a short strand of RNA that binds to specific messenger RNA (mRNA) molecules in the host, and thus prevents the mRNA from being translated. Clinical trials are currently under way to see if ASO therapy will work for various neurodevelopmental disorders, including Dravet syndrome (an epilepsy disorder), spinal muscular atrophy (a neuromuscular condition) and Batten’s disease (a devastating lysosomal storage disorder; Hill and Meisler, 2021).
Angelman syndrome is a neurodevelopmental disorder that is considered an ideal candidate for ASO therapy. Symptoms appear very early in childhood and include learning disabilities, abnormally happy demeanor, epilepsy, and difficulty controlling motor function, particularly while walking (Dagli et al., 1993). Children with Angelman syndrome also suffer from sleep problems. It has previously been shown, using cellular and animal models, that the regulation of a single gene, UBE3A, in the nervous system leads to the major features of Angelman syndrome (Kishino et al., 1997; Matsuura et al., 1997; Sutcliffe et al., 1997). UBE3A is found on chromosome 15, and most cases of Angelman syndrome are the result of a large deletion in the maternal copy of this chromosome. This means that most individuals have a working – but silent – paternal copy of UBE3A on chromosome 15. However, this copy is silenced by an antisense transcript which interferes with the expression of the paternal UBE3A.
Using ASO therapy to interfere with the antisense transcript – and thus allowing the intact copy of UBE3A to be expressed – is a promising approach for the treatment of Angelman syndrome. However, some scientists remain skeptical about the potential for ASO therapy to treat neurodevelopmental disorders, and several questions remain regarding how these treatments will work. For example, when does it become too late in human development to reactivate a missing gene in the nervous system? Are there neurogenetic diseases that can be rescued in adulthood? And, if so, what features of the disease can be treated with ASO therapies?
Extensive research has focused on answering these questions by reactivating the paternal copy UBE3A in a commonly used mouse model for Angelman syndrome. One goal of these studies has been to determine which symptoms can be reduced or eliminated. Another goal, which may be more challenging to achieve, is to establish when the gene should be reactivated during development in order to achieve the desired effect.
In 2018, researchers at the Erasmus Medical Center in Rotterdam published a set of behaviors that can be used to assess phenotypes for motor performance, repetitive behavior, anxiety, and seizure susceptibility using Ube3a maternal deficient mice (Sonzogni et al., 2018). These behaviors provide a framework to test the effectiveness of drugs (or ASOs) that reactivate the silent paternal copy of the gene. However, there are not many studies that dig deeper into the cognitive issues, sleep or epilepsy-related brain activity (as measured with EEG) that are known to be affected in this mouse model. Now, in eLife, Mingshan Xue and colleagues from Baylor College of Medicine and Ionis Pharmaceuticals – including Dongwon Lee, Wu Chen, Heet Naresh Kaku and Xinming Zhuo as first authors – report on the use of an ASO to rescue the characteristic EEG pattern and disordered sleep observed in a mouse model of Angelman syndrome (Lee et al., 2023).
First, Lee et al. designed a new Angelman syndrome mouse model that is less ‘leaky’ than the model used by other labs in previous studies – that is, a model where Ube3a expression from the maternal chromosome was more completely blocked. Then they injected the mice with an ASO against the Ube3a antisense transcript to see if the expression of the Ube3a protein could be rescued from the paternal chromosome. The results showed that, after injecting the mice with the ASO, the levels of Ube3a protein increased in multiple regions of the brain, including the cortex, the hippocampus and the hypothalamus, which controls sleep. Importantly, Ube3a expression was rescued in both juvenile and adult animals, which had previously been challenging.
Next, Lee et al. showed that the electrical activity in the brain of these mice is significantly rescued by injection of this ASO, in both juvenile and adult animals. They were also able to rescue the low level of rapid eye movement (REM) sleep observed in individuals with Angelman syndrome, with animals getting an almost normal amount of REM sleep six weeks after injection with the ASO.
The findings of Lee et al. illustrate that it may be possible to treat some aspects of Angelman syndrome after birth, and even into adulthood, using ASO therapeutics. This challenges the current view of what symptoms of Angelman syndrome are treatable, and at what age. While the delivery of ASOs to the brain is still a struggle, the latest results are encouraging for potential treatments for Angelman syndrome, and perhaps other neurodevelopmental disorders thought to be untreatable after birth.
References
-
Antisense oligonucleotide therapy for neurodevelopmental disordersDevelopmental Neuroscience 43:247–252.https://doi.org/10.1159/000517686
-
UBE3A/E6-AP mutations cause Angelman syndromeNature Genetics 15:70–73.https://doi.org/10.1038/ng0197-70
Article and author information
Author details
Publication history
Copyright
© 2023, Reiter
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,928
- views
-
- 62
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Medicine
- Neuroscience
It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature. Here, we show that cold exposure predominantly increases the expressions of the lipid lipolysis genes and proteins within the paraventricular nucleus of the hypothalamus (PVH) in male mice. Mechanistically, by using innovatively combined brain-region selective pharmacology and in vivo time-lapse photometry monitoring of lipid metabolism, we find that cold activates cells within the PVH and pharmacological inactivation of cells blunts cold-induced effects on lipid peroxidation, accumulation of lipid droplets, and lipid lipolysis in the PVH. Together, these findings suggest that PVH lipid metabolism is cold sensitive and integral to cold-induced broader regulatory responses.
-
- Medicine
Background:
Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) is a severe and deadly adverse event following ERCP. The ideal method for predicting PEP risk before ERCP has yet to be identified. We aimed to establish a simple PEP risk score model (SuPER model: Support for PEP Reduction) that can be applied before ERCP.
Methods:
This multicenter study enrolled 2074 patients who underwent ERCP. Among them, 1037 patients each were randomly assigned to the development and validation cohorts. In the development cohort, the risk score model for predicting PEP was established via logistic regression analysis. In the validation cohort, the performance of the model was assessed.
Results:
In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: –2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the pancreatic duct procedures (treated as ‘planned pancreatic duct procedures’ for calculating the score before ERCP). The PEP occurrence rate was 0% among low-risk patients (≤0 points), 5.5% among moderate-risk patients (1–3 points), and 20.2% among high-risk patients (4–7 points). In the validation cohort, the C statistic of the risk score model was 0.71 (95% CI 0.64–0.78), which was considered acceptable. The PEP risk classification (low, moderate, and high) was a significant predictive factor for PEP that was independent of intraprocedural PEP risk factors (precut sphincterotomy and inadvertent pancreatic duct cannulation) (OR 4.2, 95% CI 2.8–6.3; p<0.01).
Conclusions:
The PEP risk score allows an estimation of the risk of PEP prior to ERCP, regardless of whether the patient has undergone pancreatic duct procedures. This simple risk model, consisting of only five items, may aid in predicting and explaining the risk of PEP before ERCP and in preventing PEP by allowing selection of the appropriate expert endoscopist and useful PEP prophylaxes.
Funding:
No external funding was received for this work.