Angelman Syndrome: How late is too late for treatment?

Experiments on mice suggest that an approach called antisense oligonucleotide therapy may be able to treat some symptoms of Angelman syndrome, including problems with epilepsy and sleep.
  1. Lawrence T Reiter  Is a corresponding author
  1. Department of Neurology, Department of Pediatrics, Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, United States

An approach called antisense oligonucleotide (ASO) therapy has ushered in a new age in genetic medicine. ASO therapy works by introducing a short strand of RNA that binds to specific messenger RNA (mRNA) molecules in the host, and thus prevents the mRNA from being translated. Clinical trials are currently under way to see if ASO therapy will work for various neurodevelopmental disorders, including Dravet syndrome (an epilepsy disorder), spinal muscular atrophy (a neuromuscular condition) and Batten’s disease (a devastating lysosomal storage disorder; Hill and Meisler, 2021).

Angelman syndrome is a neurodevelopmental disorder that is considered an ideal candidate for ASO therapy. Symptoms appear very early in childhood and include learning disabilities, abnormally happy demeanor, epilepsy, and difficulty controlling motor function, particularly while walking (Dagli et al., 1993). Children with Angelman syndrome also suffer from sleep problems. It has previously been shown, using cellular and animal models, that the regulation of a single gene, UBE3A, in the nervous system leads to the major features of Angelman syndrome (Kishino et al., 1997; Matsuura et al., 1997; Sutcliffe et al., 1997). UBE3A is found on chromosome 15, and most cases of Angelman syndrome are the result of a large deletion in the maternal copy of this chromosome. This means that most individuals have a working – but silent – paternal copy of UBE3A on chromosome 15. However, this copy is silenced by an antisense transcript which interferes with the expression of the paternal UBE3A.

Using ASO therapy to interfere with the antisense transcript – and thus allowing the intact copy of UBE3A to be expressed – is a promising approach for the treatment of Angelman syndrome. However, some scientists remain skeptical about the potential for ASO therapy to treat neurodevelopmental disorders, and several questions remain regarding how these treatments will work. For example, when does it become too late in human development to reactivate a missing gene in the nervous system? Are there neurogenetic diseases that can be rescued in adulthood? And, if so, what features of the disease can be treated with ASO therapies?

Extensive research has focused on answering these questions by reactivating the paternal copy UBE3A in a commonly used mouse model for Angelman syndrome. One goal of these studies has been to determine which symptoms can be reduced or eliminated. Another goal, which may be more challenging to achieve, is to establish when the gene should be reactivated during development in order to achieve the desired effect.

In 2018, researchers at the Erasmus Medical Center in Rotterdam published a set of behaviors that can be used to assess phenotypes for motor performance, repetitive behavior, anxiety, and seizure susceptibility using Ube3a maternal deficient mice (Sonzogni et al., 2018). These behaviors provide a framework to test the effectiveness of drugs (or ASOs) that reactivate the silent paternal copy of the gene. However, there are not many studies that dig deeper into the cognitive issues, sleep or epilepsy-related brain activity (as measured with EEG) that are known to be affected in this mouse model. Now, in eLife, Mingshan Xue and colleagues from Baylor College of Medicine and Ionis Pharmaceuticals – including Dongwon Lee, Wu Chen, Heet Naresh Kaku and Xinming Zhuo as first authors – report on the use of an ASO to rescue the characteristic EEG pattern and disordered sleep observed in a mouse model of Angelman syndrome (Lee et al., 2023).

First, Lee et al. designed a new Angelman syndrome mouse model that is less ‘leaky’ than the model used by other labs in previous studies – that is, a model where Ube3a expression from the maternal chromosome was more completely blocked. Then they injected the mice with an ASO against the Ube3a antisense transcript to see if the expression of the Ube3a protein could be rescued from the paternal chromosome. The results showed that, after injecting the mice with the ASO, the levels of Ube3a protein increased in multiple regions of the brain, including the cortex, the hippocampus and the hypothalamus, which controls sleep. Importantly, Ube3a expression was rescued in both juvenile and adult animals, which had previously been challenging.

Next, Lee et al. showed that the electrical activity in the brain of these mice is significantly rescued by injection of this ASO, in both juvenile and adult animals. They were also able to rescue the low level of rapid eye movement (REM) sleep observed in individuals with Angelman syndrome, with animals getting an almost normal amount of REM sleep six weeks after injection with the ASO.

The findings of Lee et al. illustrate that it may be possible to treat some aspects of Angelman syndrome after birth, and even into adulthood, using ASO therapeutics. This challenges the current view of what symptoms of Angelman syndrome are treatable, and at what age. While the delivery of ASOs to the brain is still a struggle, the latest results are encouraging for potential treatments for Angelman syndrome, and perhaps other neurodevelopmental disorders thought to be untreatable after birth.

References

  1. Website
    1. Dagli AI
    2. Mathews J
    3. Williams CA
    (1993) Angelman syndrome
    GeneReviews. Accessed February 2, 2023.

Article and author information

Author details

  1. Lawrence T Reiter

    Lawrence T Reiter is in the Department of Neurology, the Department of Pediatrics and the Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, United States

    For correspondence
    lreiter@uthsc.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4100-2630

Publication history

  1. Version of Record published:

Copyright

© 2023, Reiter

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,951
    views
  • 64
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lawrence T Reiter
(2023)
Angelman Syndrome: How late is too late for treatment?
eLife 12:e86117.
https://doi.org/10.7554/eLife.86117

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Ole Bæk, Tik Muk ... Duc Ninh Nguyen
    Research Article

    Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.

    1. Medicine
    2. Microbiology and Infectious Disease
    Kavidha Reddy, Guinevere Q Lee ... Thumbi Ndung'u
    Research Article

    Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297–1203) days post-onset of viremia (DPOV) and 24 at 1 (1–3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.