Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming

  1. Max L Sterling
  2. Ruben Teunisse
  3. Bernhard Englitz  Is a corresponding author
  1. Radboud University Nijmegen, Netherlands

Abstract

Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, HyVL, that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4-4.8mm, 91% assigned) in localizing USVs, ~3x better than other systems, approaching the physical limits (mouse snout ~ 10mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.

Data availability

All code necessary to implement the HyVL system has been deposited at https://github.com/benglitz/HyVL and https://doi.org/10.34973/7kgc-ta72.All data has been made available at https://doi.org/10.34973/7kgc-ta72.

Article and author information

Author details

  1. Max L Sterling

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Ruben Teunisse

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Bernhard Englitz

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    englitz@science.ru.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9106-0356

Funding

DCN Internal Grant, Noldus IT

  • Bernhard Englitz

NWO VIDI grant (016.VIDI.189.052)

  • Bernhard Englitz

Technology Hotel Grant, ZonMW (40-43500-98-4141)

  • Bernhard Englitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Ethics

Animal experimentation: All of the animals and experimental procedures were conducted according to the guidelines of the Animal Welfare Body of the Central Animal Facility at the Radboud University. The protocol was approved by the Dutch National Committee CCD (Permit Number: 2017-0041).

Version history

  1. Received: January 11, 2023
  2. Preprint posted: January 20, 2023 (view preprint)
  3. Accepted: July 25, 2023
  4. Accepted Manuscript published: July 26, 2023 (version 1)
  5. Accepted Manuscript updated: July 27, 2023 (version 2)
  6. Version of Record published: September 26, 2023 (version 3)
  7. Version of Record updated: September 28, 2023 (version 4)

Copyright

© 2023, Sterling et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,197
    views
  • 190
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Max L Sterling
  2. Ruben Teunisse
  3. Bernhard Englitz
(2023)
Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming
eLife 12:e86126.
https://doi.org/10.7554/eLife.86126

Share this article

https://doi.org/10.7554/eLife.86126

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.