Combining mutation and recombination statistics to infer clonal families in antibody repertoires

  1. Natanael Spisak
  2. Gabriel Athènes
  3. Thomas Dupic
  4. Thierry Mora  Is a corresponding author
  5. Aleksandra M Walczak  Is a corresponding author
  1. École Normale Supérieure - PSL, France
  2. Harvard University, United States

Abstract

B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. All data used is publicly available. The HILARy tool with Python implementations of the CDR3 and mutations-based methods introduced above can be found at github.com/statbiophys/HILARy. The standalone prefix tree implementation can be found at github.com/statbiophys/ATrieGC.

The following previously published data sets were used

Article and author information

Author details

  1. Natanael Spisak

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
  2. Gabriel Athènes

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
  3. Thomas Dupic

    Department of Organismic and Evolutionary Biologyy, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Thierry Mora

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    For correspondence
    thierry.mora@gmail.com
    Competing interests
    No competing interests declared.
  5. Aleksandra M Walczak

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    For correspondence
    aleksandra.walczak@phys.ens.fr
    Competing interests
    Aleksandra M Walczak, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702

Funding

European Research Council (COG 724208)

  • Natanael Spisak
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

Agence Nationale de la Recherche (ANR-19-CE45-0018 `RESP- REP')

  • Natanael Spisak
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

Deutsche Forschungsgemeinschaft (CRC 1310 `Predictability in Evolution'.)

  • Natanael Spisak
  • Gabriel Athènes
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Spisak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 525
    views
  • 91
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natanael Spisak
  2. Gabriel Athènes
  3. Thomas Dupic
  4. Thierry Mora
  5. Aleksandra M Walczak
(2024)
Combining mutation and recombination statistics to infer clonal families in antibody repertoires
eLife 13:e86181.
https://doi.org/10.7554/eLife.86181

Share this article

https://doi.org/10.7554/eLife.86181

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.