Combining mutation and recombination statistics to infer clonal families in antibody repertoires

  1. Natanael Spisak
  2. Gabriel Athènes
  3. Thomas Dupic
  4. Thierry Mora  Is a corresponding author
  5. Aleksandra M Walczak  Is a corresponding author
  1. École Normale Supérieure - PSL, France
  2. Harvard University, United States

Abstract

B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. All data used is publicly available. The HILARy tool with Python implementations of the CDR3 and mutations-based methods introduced above can be found at github.com/statbiophys/HILARy. The standalone prefix tree implementation can be found at github.com/statbiophys/ATrieGC.

The following previously published data sets were used

Article and author information

Author details

  1. Natanael Spisak

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
  2. Gabriel Athènes

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
  3. Thomas Dupic

    Department of Organismic and Evolutionary Biologyy, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Thierry Mora

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    For correspondence
    thierry.mora@gmail.com
    Competing interests
    No competing interests declared.
  5. Aleksandra M Walczak

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    For correspondence
    aleksandra.walczak@phys.ens.fr
    Competing interests
    Aleksandra M Walczak, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702

Funding

European Research Council (COG 724208)

  • Natanael Spisak
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

Agence Nationale de la Recherche (ANR-19-CE45-0018 `RESP- REP')

  • Natanael Spisak
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

Deutsche Forschungsgemeinschaft (CRC 1310 `Predictability in Evolution'.)

  • Natanael Spisak
  • Gabriel Athènes
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Spisak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 573
    views
  • 97
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natanael Spisak
  2. Gabriel Athènes
  3. Thomas Dupic
  4. Thierry Mora
  5. Aleksandra M Walczak
(2024)
Combining mutation and recombination statistics to infer clonal families in antibody repertoires
eLife 13:e86181.
https://doi.org/10.7554/eLife.86181

Share this article

https://doi.org/10.7554/eLife.86181

Further reading

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.