Combining mutation and recombination statistics to infer clonal families in antibody repertoires

  1. Natanael Spisak
  2. Gabriel Athènes
  3. Thomas Dupic
  4. Thierry Mora  Is a corresponding author
  5. Aleksandra M Walczak  Is a corresponding author
  1. École Normale Supérieure - PSL, France
  2. Harvard University, United States

Abstract

B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. All data used is publicly available. The HILARy tool with Python implementations of the CDR3 and mutations-based methods introduced above can be found at github.com/statbiophys/HILARy. The standalone prefix tree implementation can be found at github.com/statbiophys/ATrieGC.

The following previously published data sets were used

Article and author information

Author details

  1. Natanael Spisak

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
  2. Gabriel Athènes

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
  3. Thomas Dupic

    Department of Organismic and Evolutionary Biologyy, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Thierry Mora

    Laboratoire de physique de l'École normale supérieure, École Normale Supérieure - PSL, Paris, France
    For correspondence
    thierry.mora@gmail.com
    Competing interests
    No competing interests declared.
  5. Aleksandra M Walczak

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    For correspondence
    aleksandra.walczak@phys.ens.fr
    Competing interests
    Aleksandra M Walczak, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702

Funding

European Research Council (COG 724208)

  • Natanael Spisak
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

Agence Nationale de la Recherche (ANR-19-CE45-0018 `RESP- REP')

  • Natanael Spisak
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

Deutsche Forschungsgemeinschaft (CRC 1310 `Predictability in Evolution'.)

  • Natanael Spisak
  • Gabriel Athènes
  • Thomas Dupic
  • Thierry Mora
  • Aleksandra M Walczak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lindsay Cowell

Version history

  1. Received: January 14, 2023
  2. Accepted: July 22, 2024
  3. Accepted Manuscript published: August 9, 2024 (version 1)

Copyright

© 2024, Spisak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natanael Spisak
  2. Gabriel Athènes
  3. Thomas Dupic
  4. Thierry Mora
  5. Aleksandra M Walczak
(2024)
Combining mutation and recombination statistics to infer clonal families in antibody repertoires
eLife 13:e86181.
https://doi.org/10.7554/eLife.86181

Share this article

https://doi.org/10.7554/eLife.86181

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.