Genetics: The next step in Mendelian randomization

Expanding a statistical approach called Mendelian randomization to include multiple variables may help researchers to identify new molecular causes of specific traits.
  1. Matthias Weith
  2. Andreas Beyer  Is a corresponding author
  1. Cologne Excellence Cluster on Cellular Stress Responses in Age‐Associated Diseases, and the Institute for Biochemistry, University of Cologne, Germany
  2. Cologne Excellence Cluster on Cellular Stress Responses in Age‐Associated Diseases, the Faculty of Medicine and University Hospital of Cologne, the Center for Molecular Medicine Cologne, and the Institute for Genetics, University of Cologne, Germany

Understanding how variations in our genome influence our susceptibility to diseases is one of the most compelling research topics in the life sciences. Researchers have used genome-wide association studies – experiments that analyze the DNA sequences of multiple individuals – to identify statistical relationships between genetic variants and specific human traits, such as susceptibility to a disease or various body parameters.

Despite the success of this approach, major challenges persist. First, associations between variants that are located close to each other within the genome can make it difficult to determine which of these genetic changes are responsible for the phenotype of interest (a problem called linkage disequilibrium). Second, even if specific variants can be identified, it is often not straightforward to determine the molecular mechanism by which they impact the trait (Tam et al., 2019).

To overcome these difficulties, studies often include information about other modalities such as transcriptomes, proteins and metabolites (Emilsson et al., 2008; Fraser and Xie, 2009; Nicolae et al., 2010; Wainberg et al., 2019; Schadt, 2009; Suhre et al., 2011). Some ‘multi-omic’ studies use one modality, or ‘layer’, to confirm changes to another, such as confirming changes in levels of mRNA by measuring the respective protein product. However, there is a shortage of examples of mechanistic links between the different layers (Buccitelli and Selbach, 2020; Wörheide et al., 2021). Now, in eLife, Zoltán Kutalik, Eleonora Porcu and colleagues from the Swiss Institute of Bioinformatics and the University of Lausanne – including Chiara Auwerx as first author – report a new approach that uses a technique called Mendelian randomization to reveal a chain of molecular connections between the transcriptome, metabolome, and high-level physiological traits such as biomarkers associated with kidney health (Auwerx et al., 2023).

Mendelian randomization is considered to be an ‘experiment of nature’, as it uses variations already present in the genetic code to determine if exposure to certain conditions (such as the amount of cholesterol in the blood, or the expression level of a gene) affects a specific trait (for instance, increased susceptibility to heart disease). The genetic variants act as a proxy, or ‘instrument’, for exposures that are difficult or impossible to manipulate in the population being studied. Mediation analysis can then be applied to ask if the exposure is responsible for the effects of the instrumental variable on the trait of interest. However, it is necessary to proceed carefully (Sanderson et al., 2022): for example, the instrumental variable being used should not affect the trait of interest through any other mediator.

The computational framework presented by Auwerx et al. integrates results from genome-wide association studies with data on genetic variants that affect the level of transcripts or the composition of metabolites. These variants are typically referred to as eQTL (short for expression quantitative trait loci) and mQTL (metabolite QTL), and can be derived from separate population cohorts, allowing researchers to tap into the vast resources of information that are already available.

First, causal links between transcripts and metabolites are established using overlapping mQTL and eQTL as instrumental variables. Causal effects of metabolites on traits of interest are then determined in the same manner using mQTL and genetic variants identified in genome-wide association studies. The next step in the framework is purely based on this established causality: transcripts that causally affect trait-modifying metabolites have to be causally linked to the same trait, resulting in transcript-metabolite-trait triplets (Figure 1). A statistical calculation, known as multivariate Mendelian randomization, is then performed on these triplets using the metabolite-associated variants as the instrumental variable. This determines what proportion of change in the outcome is a result of the transcript directly (or via unknown mediators) impacting the trait, and what proportion is the result of changes in the level of the metabolite mediating the relationship between them.

Mendelian randomization with multiple variables.

In the first step, Mendelian randomization calculations establish causal links between: (i) transcripts (T; pink chains) and metabolites (M; green hexagons) using eQTL and mQTL as instrumental variables (IV; first row); (ii) metabolites and various phenotypes (Y, such as height), using mQTL and the genetic variants associated with the traits as instrumental variables (second row). These causal links are then overlapped to establish causal triplets (third row). These causal triplets are subsequently analyzed in another Mendelian randomization-based calculation, which evaluates the effect of the respective mQTL on the levels of the transcripts, metabolites and traits of the triplet (fourth row). From this multivariate Mendelian randomization (MWMR), the proportion of transcript changes that directly effect a trait, and the proportion that cause an effect via metabolites, can be inferred. eQTL: expression quantitative trait loci; mQTL: metabolite quantitative trait loci.

Image credit: Figure created using BioRender (CC BY 4.0).

Auwerx et al. highlight an intriguing example of genetic variants affecting the transcription of a citrate-exporting protein encoded by a gene called ANKH that has been implicated in mineralization disorders. The resulting change to the export of citrate seems to affect the level of calcium present in the serum of individuals – a connection that was not detected when only transcript levels were correlated with the calcium trait.

By extending the Mendelian randomization approach to include two modalities (transcripts and metabolites), this new framework can detect causal relationships that could not be identified by comparing the genome wide association data to a single modality only. It also provides new insights into how the transcript impacts the phenotype through metabolic changes. With multi-omics studies increasing further in size, it is highly probable that even more advanced statistical approaches may become feasible in the future.

References

Article and author information

Author details

  1. Matthias Weith

    Matthias Weith is in the Cologne Excellence Cluster on Cellular Stress Responses in Age‐Associated Diseases, and the Institute for Biochemistry, University of Cologne, Cologne, Germany

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0804-4262
  2. Andreas Beyer

    Andreas Beyer is in the Cologne Excellence Cluster on Cellular Stress Responses in Age‐Associated Diseases, the Faculty of Medicine and University Hospital of Cologne, the Center for Molecular Medicine Cologne, and the Institute for Genetics, University of Cologne, Cologne, Germany

    For correspondence
    andreas.beyer@uni-koeln.de
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3891-2123

Publication history

  1. Version of Record published:

Copyright

© 2023, Weith and Beyer

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,808
    views
  • 207
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthias Weith
  2. Andreas Beyer
(2023)
Genetics: The next step in Mendelian randomization
eLife 12:e86416.
https://doi.org/10.7554/eLife.86416

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hans Tobias Gustafsson, Lucas Ferguson ... Oliver J Rando
    Research Article

    Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.