Viral Replication: Learning more about hepatitis E virus
Hepatitis E virus (HEV) is a single-stranded, positive-sense RNA virus that is spread by fecal-oral transmission. Although infection is usually self-limiting, it can result in death via acute liver failure. The World Health Organization estimates that HEV causes 20 million infections and 44,000 deaths per year, particularly among expectant mothers (WHO, 2022). The genome of the HEV contains three open reading frames that produce: (i) an enzyme that helps the virus to replicate itself; (ii) a capsid protein for the protein shell that surrounds the newly replicated viruses; (iii) a viroporin that helps the new viruses to escape from cells that have already been infected so that they can infect other cells.
In HEV, translation of the first open reading frame (ORF1) produces a polyprotein that contains seven domains. Multi-domain polyproteins are also made by other viruses, including HIV, hepatitis C virus, Chikungunya, Dengue, SARS coronavirus, rubella, influenza, and polio. In most other viral families, this polyprotein is then cleaved into individual proteins by enzymes called proteases that derive from the virus or its host (Yost and Marcotrigiano, 2013). Although the domain organization of the HEV ORF1 polyprotein is similar to other viruses (Figure 1), it is not clear if ORF1 undergoes cleavage. Previous studies have suggested that ORF1 contains a domain that acts as a protease, with a cysteine residue (Cys483) and a histidine residue (His590) acting as the catalytic sites. However, while Cys483 is highly conserved, His590 is not, and there is little evidence that this domain (which is called a putative papain-like cysteine protease, or pPCP for short) operates as a protease.

Comparing four RNA viruses.
The seven domains of the ORF1 polyprotein for the hepatitis E virus (HEV; top) are shown schematically and compared to polyproteins from rubella, Chikungunya (CHIKV), and hepatitis C virus (HCV). All four viruses contain a helicase enzyme (Hel) and an RNA polymerase enzyme (RdRp). Rubella, CHIKV and HCV contain proteases, but LeDesma et al. have shown that the PCP domain in HEV that was previously thought to be a protease is a zinc-binding domain. The locations of the zinc-binding motifs are represented by coloured spheres: green for 6Cys (HEV); orange for HisGluHis (HEV); blue for 3Cys1His (Rubella and HCV), yellow for 4Cys (CHIKV and HCV). MeT: methyltransferase; Y: Y-domain; PCP: papain-like cysteine protease; HVR: hypervariable region; X: macro-domain; AUD: alphavirus unique domain; NS/nsP: non-structural protein.
Now, in eLife, Alexander Ploss and colleagues at Princeton University – including Robert LeDesma as first author – report the results of experiments which shed light on the role of the pPCP domain (LeDesma et al., 2023). Their results indicate that this domain – while necessary for replication of the virus – is not a protease, but rather a structural organization and localization domain. Moreover, they also show that Cys483 facilitates zinc binding rather than being a catalytic site for a protease.
If the pPCP domain were a protease, LeDesma et al. hypothesized that it would be possible to rescue protease-defective mutants by expressing pPCP in trans, so they generated cell lines that expressed either the wild-type ORF1 polyprotein, two mutant ORF1 polyproteins (called C483A and Pol(–)), or the wild-type pPCP domain alone. The next step was to transfect each of these cell lines with a reporter RNA in which ORF1 was either wild type or one of the mutants. Their results suggest that the pPCP domain is either not a protease or not proteolytically active in isolation.
The researchers then turned their attention to the residue Cys483. If this residue were part of a protease catalytic site then it, and no other cysteines in the pPCP domain, would support replicase activity. However, alanine and triple-alanine mutation indicated that six of the eight cysteines in the PCP domain are critical for replicase activity.
Since there is no protease, they investigated what the pPCP domain and the residue Cys483 might do. LeDesma et al. noticed that a six-cysteine motif within the domain was similar to other proteins that may bind bivalent metal cations. Using inductively coupled plasma mass spectrometry and confocal microscopy, the researchers observed that the mutation C483A reduced the ability of the domain to bind zinc ions, and also resulted in ORF1 being unable to localize in the nucleus.
Like all the best science, this work raises more questions than it answers. Zinc-binding domains with unique folds have been identified in a number of positive-sense RNA viruses (Shin et al., 2012; Tellinghuisen et al., 2004; Tellinghuisen et al., 2005; see coloured circles in Figure 1), and if the six cysteines of the pPCP domain bind zinc, the structure will be novel. A transcriptional activator in yeast called Gal4 is the foundational example of a six-cysteine, zinc-binding motif (Hong et al., 2008), but the six-cysteine pattern of the pPCP domain does not align well with the sequence or structure of Gal4, which again suggests a novel structure.
In Chikungunya, a viral protease digests the polyprotein to generate a functional replication complex (Tan et al., 2022). In the absence of a protease, how is this achieved in HEV? Zinc-binding domains often function as dimers or as repeat domains. Does pPCP structurally organize the other domains within a single copy of the ORF1 polyprotein, or does it organize multiple ORF1s? Many zinc-binding domains bind double-stranded nucleic acids, and the six-cysteine region in pPCP has several basic residues that could facilitate this.
Given the significant effect that HEV infection has on human health, more information about ORF1 domain organization and function can assist in the development of drugs to combat disease.
References
-
Molecular architecture of the Chikungunya virus replication complexScience Advances 8:eadd2536.https://doi.org/10.1126/sciadv.add2536
-
The NS5A protein of hepatitis C virus is a zinc metalloproteinThe Journal of Biological Chemistry 279:48576–48587.https://doi.org/10.1074/jbc.M407787200
-
Viral precursor polyproteins: keys of regulation from replication to maturationCurrent Opinion in Virology 3:137–142.https://doi.org/10.1016/j.coviro.2013.03.009
Article and author information
Author details
Publication history
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 1,022
- views
-
- 95
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.
-
- Genetics and Genomics
- Microbiology and Infectious Disease
Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.