Spermatogenesis: All eyes on FOXC2

New evidence in mice suggests that cells expressing the transcription factor FOXC2 may form a reservoir of quiescent stem cells that contributes to sperm formation.
  1. Wei Yan  Is a corresponding author
  2. John R McCarrey
  1. Lundquist Institute for Biomedical Innovation at the Harbor-UCLA Medical Center, United States
  2. Department of Medicine, David Geffen School of Medicine at UCLA, United States
  3. Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, United States

Male fertility relies on the continuous production of sperm via a process known as spermatogenesis. This involves spermatogonial stem cells (SSCs) dividing to form undifferentiated spermatogonia (uSPGs), which then progress through the meiotic and haploid phases of spermatogenesis to form mature sperm (de Rooij, 1998). To ensure that the supply of sperm remains constant, SSCs must continuously provide new uSPGs while also self-renewing to maintain their stocks.

While the existence of SSCs in the adult testis is undisputed, their origin, identity and maintenance remain unclear. In fact, scientists still lack genetic markers that clearly allow them to distinguish these cells from the rest of the uSPG pool. So far, the hallmark feature of SSCs is their ability to re-establish full spermatogenesis when transplanted into testes devoid of germ cells (Kubota and Brinster, 2018; Lord and Oatley, 2018).

Previous work has identified three types of uSPGs – single, paired and aligned – which emerge during the first phase of the differentiation process. When a single uSPG divides, it can sometimes produce paired daughter cells that remain connected after mitosis. In turn, these paired uSPGs can expand to form chains of four to 32 aligned uSPGs, with some of these cells progressing through to the later stages of spermatogenesis to form mature sperm (de Rooij, 2017; Kubota and Brinster, 2018; de Rooij, 1998).

Transplantation experiments have revealed that most cells which can perform the hallmark feature of SSCs (that is, re-establishing full spermatogenesis in testes lacking germ cells) are found within the single uSPG population, but may also be present among paired and aligned progenitors (Kubota and Brinster, 2018). Meanwhile, genetic studies combined with lineage-tracing experiments have highlighted several genes predominantly expressed in single uSPGs that act as SSCs; however, these genes cannot represent strict SSC markers as they are also expressed in progenitors engaged in the differentiation process (Kubota and Brinster, 2018; Sharma et al., 2019). Now, in eLife, Wei Song and colleagues at the University of Dundee and the Peking Union Medical College – including Zhipeng Wang as first author – report findings which suggest that a transcription factor known as FOXC2 may represent a more precise marker of functional SSCs (Wang et al., 2023).

The team started by screening the expression profile of individual cells in a population of mouse uSPGs containing both SSCs and progenitors. Among the top ten genes preferentially enriched in these cells, Foxc2 was the only one to code for a protein exclusively present in the nucleus of uSPGs that also expressed ZBTB16, a protein important for SSCs to self-renew. A closer look showed that Foxc2 expression was most abundant in single uSPGs compared to paired or aligned uSPGs. Interestingly, FOXC2-producing uSPGs were mostly quiescent, with only 5% featuring markers associated with proliferation. This finding is consistent with the fact that many FOXC2-regulated genes are involved in cell cycle arrest.

To test whether FOXC2-producing uSPGs could underpin spermatogenesis, Wang et al. transplanted a population of uSPGs enriched in these cells into the testes of mice treated with busulfan, a toxic compound that kills endogenous germ cells. After two months, these animals had generated a much larger number of colonies of differentiating cells compared to control mice which had received a non-enriched uSPG population. Based on these results, Wang et al. set out to show that FOXC2-producing single uSPGs are in fact functional SSCs.

The first step was for the team to follow the fate of these cells for six weeks following transplantation. This revealed that this population could give rise to all subtypes of uSPGs, with some of the resulting progenitors differentiating into sperm that could fertilise eggs and generate offspring. However, FOXC2-producing uSPGs were also capable of self-renewal, forming cells which feature genetic markers associated with SSCs. More specifically, the lineage-tracing experiments showed that FOXC2-producing uSPGs could produce paired uSPGs that would then either divide to form two single uSPGs (including some that retained Foxc2 expression), or form chains of aligned uSPGs containing at most one FOXC2-producing cell (Figure 1A).

Undifferentiated spermatogonia which express Foxc2 may represent the entire population of spermatogonial stem cells in the adult testes of mice.

(A) Sperm is created inside seminiferous tubules (pink tubes) through spermatogenesis, a complex differentiation process that starts with the division of spermatogonial stem cells (SSCs). SSCs are difficult to distinguish from other types of undifferentiated spermatogonia (uSPGs) which also reside in the seminiferous tubules. Wang et al. propose that single uSPGs that express the gene encoding the transcription factor FOXC2 constitutes most, if not all, the SSC pool. About 95% of these cells are quiescent (green cells) and the remaining ~5% are proliferative (orange cells). Proliferating FOXC2-producing single uSPGs may divide asymmetrically to generate paired and aligned uSPGs that remain attached to each other after mitosis. These cells show differential expression of Foxc2. Some of the cells that do not produce FOXC2 (light blue cells with dark blue nucleus) will differentiate into progenitors (light blue cells) and ultimately become sperm. Others, which have retained Foxc2 expression, may split away from their sister cells through a fragmentation process (scissors) and return to a FOXC2-producing single uSPG state to contribute to the SSC pool. Self-renewal of SSCs may also be achieved by symmetrical division of a single FOXC2-producing SSC to form two single, FOXC2-producing daughter SSCs. (B) Deleting FOXC2-producing cells causes accelerated exhaustion of SSCs, and, in time (hourglass) leads to male infertility. (C) Quiescent FOXC2-producing single uSPGs are resistant to cytotoxins such as busulfan treatment; they can survive these environmental disruptions and replenish the pools of uSPGs, thereby maintaining SSC homeostasis.

Wang et al. then inactivated Foxc2 in the germ cells of adult testes to better investigate FOXC2 function. This gradually exhausted the number of available uSPGs, leading to smaller testes and eventual infertility (Figure 1B). If Foxc2 was deleted in male germ cells before mice started to produce sperm, however, an initial wave of spermatogenesis was still able to occur but without subsequent, continuous sperm production. This is consistent with the fact that the first wave of sperm cell formation does not rely on SSCs, while subsequent spermatogenesis does.

Finally, Wang et al. tested whether FOXC2-producing uSPGs contribute to germline regeneration, an important property that allows sperm production to resume after being disrupted. They exposed adult mice to busulfan and found that the remaining population of uSPGs was primarily formed of quiescent FOXC2-producing cells; this aligns with previous findings showing that quiescence helps to protect stem cells from environmental insults (Murley et al., 2022; Tümpel and Rudolph, 2019). After a month, FOXC2-producing cells showed signs of higher levels of proliferation (yet the size of the population remained stable), and after four months spermatogenesis had been fully re-established (Figure 1C).

Together, these results suggest that single uSPGs which express Foxc2 could indeed constitute the reservoir of SSCs in the mammalian testis. According to these findings, FOXC2 may promote a reversible quiescent state through negative regulation of cell cycle progress. However, a small fraction of this population (~5%) undergoes active proliferation, creating a number of paired and then aligned uSPGs which may include a single cell that continues to express Foxc2. Such Foxc2-expressing cells may detach themselves from their sister cells in pairs or chains, returning to a single uSPG state and contributing to the renewal of the SSC pool. Meanwhile, other paired and aligned uSPGs that are not expressing Foxc2 progress through spermatogenesis to form sperm.

Overall, this work provides strong evidence that FOXC2 could mark functional SSCs more precisely while also actively shaping the fate of these cells. This transcription factor is highly conserved and, as Wang et al. show, it is expressed in a similar pattern in human and mouse testes (Wei et al., 2018). FOXC2 may therefore emerge as a useful marker and important regulator for investigating fertility issues in men.

References

    1. de Rooij D G
    (1998) Stem cells in the testis
    International Journal of Experimental Pathology 79:67–80.
    https://doi.org/10.1046/j.1365-2613.1998.00057.x

Article and author information

Author details

  1. Wei Yan

    Wei Yan is in the Lundquist Institute for Biomedical Innovation at the Harbor-UCLA Medical Center, Torrance, United States, and the Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, United States

    For correspondence
    wei.yan@lundquist.org
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9569-9026
  2. John R McCarrey

    John R McCarrey is in the Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5784-9318

Publication history

  1. Version of Record published: August 10, 2023 (version 1)

Copyright

© 2023, Yan and McCarrey

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 273
    views
  • 48
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Yan
  2. John R McCarrey
(2023)
Spermatogenesis: All eyes on FOXC2
eLife 12:e90747.
https://doi.org/10.7554/eLife.90747

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Y Cheng
    Research Article Updated

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.