Spermatogenesis: All eyes on FOXC2
Male fertility relies on the continuous production of sperm via a process known as spermatogenesis. This involves spermatogonial stem cells (SSCs) dividing to form undifferentiated spermatogonia (uSPGs), which then progress through the meiotic and haploid phases of spermatogenesis to form mature sperm (de Rooij, 1998). To ensure that the supply of sperm remains constant, SSCs must continuously provide new uSPGs while also self-renewing to maintain their stocks.
While the existence of SSCs in the adult testis is undisputed, their origin, identity and maintenance remain unclear. In fact, scientists still lack genetic markers that clearly allow them to distinguish these cells from the rest of the uSPG pool. So far, the hallmark feature of SSCs is their ability to re-establish full spermatogenesis when transplanted into testes devoid of germ cells (Kubota and Brinster, 2018; Lord and Oatley, 2018).
Previous work has identified three types of uSPGs – single, paired and aligned – which emerge during the first phase of the differentiation process. When a single uSPG divides, it can sometimes produce paired daughter cells that remain connected after mitosis. In turn, these paired uSPGs can expand to form chains of four to 32 aligned uSPGs, with some of these cells progressing through to the later stages of spermatogenesis to form mature sperm (de Rooij, 2017; Kubota and Brinster, 2018; de Rooij, 1998).
Transplantation experiments have revealed that most cells which can perform the hallmark feature of SSCs (that is, re-establishing full spermatogenesis in testes lacking germ cells) are found within the single uSPG population, but may also be present among paired and aligned progenitors (Kubota and Brinster, 2018). Meanwhile, genetic studies combined with lineage-tracing experiments have highlighted several genes predominantly expressed in single uSPGs that act as SSCs; however, these genes cannot represent strict SSC markers as they are also expressed in progenitors engaged in the differentiation process (Kubota and Brinster, 2018; Sharma et al., 2019). Now, in eLife, Wei Song and colleagues at the University of Dundee and the Peking Union Medical College – including Zhipeng Wang as first author – report findings which suggest that a transcription factor known as FOXC2 may represent a more precise marker of functional SSCs (Wang et al., 2023).
The team started by screening the expression profile of individual cells in a population of mouse uSPGs containing both SSCs and progenitors. Among the top ten genes preferentially enriched in these cells, Foxc2 was the only one to code for a protein exclusively present in the nucleus of uSPGs that also expressed ZBTB16, a protein important for SSCs to self-renew. A closer look showed that Foxc2 expression was most abundant in single uSPGs compared to paired or aligned uSPGs. Interestingly, FOXC2-producing uSPGs were mostly quiescent, with only 5% featuring markers associated with proliferation. This finding is consistent with the fact that many FOXC2-regulated genes are involved in cell cycle arrest.
To test whether FOXC2-producing uSPGs could underpin spermatogenesis, Wang et al. transplanted a population of uSPGs enriched in these cells into the testes of mice treated with busulfan, a toxic compound that kills endogenous germ cells. After two months, these animals had generated a much larger number of colonies of differentiating cells compared to control mice which had received a non-enriched uSPG population. Based on these results, Wang et al. set out to show that FOXC2-producing single uSPGs are in fact functional SSCs.
The first step was for the team to follow the fate of these cells for six weeks following transplantation. This revealed that this population could give rise to all subtypes of uSPGs, with some of the resulting progenitors differentiating into sperm that could fertilise eggs and generate offspring. However, FOXC2-producing uSPGs were also capable of self-renewal, forming cells which feature genetic markers associated with SSCs. More specifically, the lineage-tracing experiments showed that FOXC2-producing uSPGs could produce paired uSPGs that would then either divide to form two single uSPGs (including some that retained Foxc2 expression), or form chains of aligned uSPGs containing at most one FOXC2-producing cell (Figure 1A).
Wang et al. then inactivated Foxc2 in the germ cells of adult testes to better investigate FOXC2 function. This gradually exhausted the number of available uSPGs, leading to smaller testes and eventual infertility (Figure 1B). If Foxc2 was deleted in male germ cells before mice started to produce sperm, however, an initial wave of spermatogenesis was still able to occur but without subsequent, continuous sperm production. This is consistent with the fact that the first wave of sperm cell formation does not rely on SSCs, while subsequent spermatogenesis does.
Finally, Wang et al. tested whether FOXC2-producing uSPGs contribute to germline regeneration, an important property that allows sperm production to resume after being disrupted. They exposed adult mice to busulfan and found that the remaining population of uSPGs was primarily formed of quiescent FOXC2-producing cells; this aligns with previous findings showing that quiescence helps to protect stem cells from environmental insults (Murley et al., 2022; Tümpel and Rudolph, 2019). After a month, FOXC2-producing cells showed signs of higher levels of proliferation (yet the size of the population remained stable), and after four months spermatogenesis had been fully re-established (Figure 1C).
Together, these results suggest that single uSPGs which express Foxc2 could indeed constitute the reservoir of SSCs in the mammalian testis. According to these findings, FOXC2 may promote a reversible quiescent state through negative regulation of cell cycle progress. However, a small fraction of this population (~5%) undergoes active proliferation, creating a number of paired and then aligned uSPGs which may include a single cell that continues to express Foxc2. Such Foxc2-expressing cells may detach themselves from their sister cells in pairs or chains, returning to a single uSPG state and contributing to the renewal of the SSC pool. Meanwhile, other paired and aligned uSPGs that are not expressing Foxc2 progress through spermatogenesis to form sperm.
Overall, this work provides strong evidence that FOXC2 could mark functional SSCs more precisely while also actively shaping the fate of these cells. This transcription factor is highly conserved and, as Wang et al. show, it is expressed in a similar pattern in human and mouse testes (Wei et al., 2018). FOXC2 may therefore emerge as a useful marker and important regulator for investigating fertility issues in men.
References
-
Stem cells in the testisInternational Journal of Experimental Pathology 79:67–80.https://doi.org/10.1046/j.1365-2613.1998.00057.x
-
The nature and dynamics of spermatogonial stem cellsDevelopment 144:3022–3030.https://doi.org/10.1242/dev.146571
-
Quiescence: good and bad of stem cell agingTrends in Cell Biology 29:672–685.https://doi.org/10.1016/j.tcb.2019.05.002
-
The forkhead transcription factor FOXC2 is required for maintaining murine spermatogonial stem cellsStem Cells and Development 27:624–636.https://doi.org/10.1089/scd.2017.0233
Article and author information
Author details
Publication history
Copyright
© 2023, Yan and McCarrey
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 301
- views
-
- 49
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Genetics and Genomics
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
-
- Developmental Biology
Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.