Epilepsy: How parasitic larvae affect the brain

The release of the neurotransmitter glutamate by the parasitic tapeworm Taenia solium appears to be implicated in the pathophysiology of a widespread, but neglected, form of adult-onset epilepsy.
  1. Zin-Juan Klaft
  2. Chris Dulla  Is a corresponding author
  1. Department of Neuroscience, Tufts University School of Medicine, United States

Infections caused by the tapeworm Taenia solium are a major source of illness, especially in low- and middle-income countries (Torgerson et al., 2015). When the larvae of this parasite establish cysts in the brain, a condition that is known as neurocysticercosis, the consequences can include seizures and epilepsy. Indeed, neurocysticercosis is among the leading causes of adult-onset epilepsy worldwide (Ta and Blond, 2022; Nash et al., 2013), and a significant fraction (22–29%) of all epilepsy patients in sub-Saharan countries have neurocysticercosis (Owolabi et al., 2020; Ndimubanzi et al., 2010).

Seizures and epilepsy are thought to occur when the cysts burst and release their contents into the brain, and previous research has focused on the role of the brain’s neuroinflammatory response in the development of these conditions (Robinson et al., 2012). Interestingly Taenia solium larvae are thought to actively suppress the local immune response to their own presence, allowing them to reside in the brain for months or even years. However, besides the work on neuroinflammation, there has been little research into the effects of the larvae (and their secretions) on neuronal activity. Now, in eLife , Joseph Raimondo (University of Cape Town) and colleagues – including Anja de Lange and Hayley Tomes as joint first authors – report the results of experiments that explore the impact of larvae on the brain (de Lange et al., 2023). These results are directly relevant to understanding the pathogenesis of acute seizures (ictogenesis) and – since seizures beget seizures – also chronic epilepsy.

The key finding of the new work is that the larvae and their secretions contain a neurotransmitter called glutamate, with the level of glutamate being high enough to directly activate surrounding neurons. To show this, de Lange et al. first homogenized Taenia solium larvae and collected their excretion/secretion products. They then exposed neurons to these products, and showed that this exposure activated the neurons to fire action potentials. Moreover, if glutamate receptors in the neurons were blocked before exposure to the larval products, the neurons were not activated.

The researchers – who are based in Cape Town and at institutions in Australia, France, Germany, the UK and Zambia – then used fluorescent calcium imaging to study how local activation of neurons by the glutamate from the larvae affects local brain circuits. Rises in intracellular calcium are a proxy for neuronal activity, so imaging calcium allows the neuronal activity across brain circuits to be visualized. These imaging experiments confirmed that glutamate from the larvae caused local neuronal activation that led to the subsequent activation of synaptically connected neurons across distal brain circuits. The researchers also investigated other products excreted or secreted by the larvae that could potentially affect the firing of neurons (such as substance P, acetylcholine and potassium), but none of these had the same widespread impact as glutamate. The results were consistent, therefore, with glutamate from the larvae having a potential role in the generation and/or propagation of seizures.

Next, de Lange et al. showed that the larval products showed similar excitatory effects in in vitro brain tissue from both animal models and from resected human brain tissue. They also demonstrated that the glutamate can excite the surrounding brain tissue, which has been shown to drive later epilepsy in other studies (Zeidler et al., 2018). Moreover, it has previously been shown that glutamate released by brain tumors can induce epileptic activity (Buckingham et al., 2011; Sontheimer, 2008), and researchers are exploring ways to target glutamate release in order to prevent such seizures (Ghoochani et al., 2016).

Similar strategies may be beneficial when tackling neurocysticercosis to reduce seizures, or possibly even prevent the development of chronic epilepsy. This is critically important because millions of neurocysticercosis patients suffer from seizures and epilepsy. However, the latest study does not demonstrate that larval products cause seizures or epilepsy, as it was carried out at the level of single cells and small circuits with small volumes (just picoliters) of larval products, so for now we only know how neurocysticercosis leads to neuronal hyperexcitability. Future studies will be needed to understand the effects of larval products, and the larvae themselves, on larger circuits in vivo, and to explore if/how this pathological excitation leads to long-term changes in the brain that cause it to generate spontaneous recurring seizures. Non-glutamatergic mechanisms, including neuroimmunological processes, may also still be relevant to these changes.

This study moves the field closer to understanding epilepsy in human neurocysticercosis by providing exciting experimental evidence, and by also providing naturalistic, disease-relevant models that will enable the study of novel treatment approaches. It is also important because neurocysticercosis – a condition that disproportionately affects people in low-income and under-resourced countries – has not received sufficient attention in the past. The current findings from Cape Town may just have kickstarted much-needed research in neurocysticercosis by finding out what Taenia solium larvae do to the neuronal networks that surround them. Exciting!

Neurocysticercosis and epilepsy.

Taenia Solium is a parasite that can infect the brain and cause neurocysticercosis, which is a prevalent but poorly understood cause of acquired epilepsy. de Lange et al. have shown that Taenia Solium contains significant amounts of a neurotransmitter called glutamate, which can activate neurons and circuits of neurons. Future studies are required to establish a link between Taenia Solium, glutamate and epilepsy, but this study is an important first step in this direction.

References

Article and author information

Author details

  1. Zin-Juan Klaft

    Zin-Juan Klaft is in the Department of Neuroscience, Tufts University School of Medicine, Boston, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8208-7263
  2. Chris Dulla

    Chris Dulla is in the Department of Neuroscience, Tufts University School of Medicine, Boston, United States

    For correspondence
    chris.dulla@tufts.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6560-6535

Publication history

  1. Version of Record published:

Copyright

© 2023, Klaft and Dulla

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,060
    views
  • 60
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zin-Juan Klaft
  2. Chris Dulla
(2023)
Epilepsy: How parasitic larvae affect the brain
eLife 12:e91149.
https://doi.org/10.7554/eLife.91149
  1. Further reading

Further reading

    1. Neuroscience
    Bhanu Priya Somashekar, Upinder Singh Bhalla
    Research Article

    Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity. Using rat hippocampal and cortical network statistics, we show that clustered convergence of axons from three to four different co-active ensembles is likely even in randomly connected networks, leading to representation of arbitrary input combinations in at least 10 target neurons in a 100,000 population. In the presence of larger ensembles, spatiotemporally ordered convergence of three to five axons from temporally ordered ensembles is also likely. These active clusters result in higher neuronal activation in the presence of strong dendritic nonlinearities and low background activity. We mathematically and computationally demonstrate a tight interplay between network connectivity, spatiotemporal scales of subcellular electrical and chemical mechanisms, dendritic nonlinearities, and uncorrelated background activity. We suggest that dendritic clustered and sequence computation is pervasive, but its expression as somatic selectivity requires confluence of physiology, background activity, and connectomics.

    1. Neuroscience
    Hyun Jee Lee, Jingting Liang ... Hang Lu
    Research Advance

    Cell identification is an important yet difficult process in data analysis of biological images. Previously, we developed an automated cell identification method called CRF_ID and demonstrated its high performance in Caenorhabditis elegans whole-brain images (Chaudhary et al., 2021). However, because the method was optimized for whole-brain imaging, comparable performance could not be guaranteed for application in commonly used C. elegans multi-cell images that display a subpopulation of cells. Here, we present an advancement, CRF_ID 2.0, that expands the generalizability of the method to multi-cell imaging beyond whole-brain imaging. To illustrate the application of the advance, we show the characterization of CRF_ID 2.0 in multi-cell imaging and cell-specific gene expression analysis in C. elegans. This work demonstrates that high-accuracy automated cell annotation in multi-cell imaging can expedite cell identification and reduce its subjectivity in C. elegans and potentially other biological images of various origins.