Epilepsy: How parasitic larvae affect the brain

The release of the neurotransmitter glutamate by the parasitic tapeworm Taenia solium appears to be implicated in the pathophysiology of a widespread, but neglected, form of adult-onset epilepsy.
  1. Zin-Juan Klaft
  2. Chris Dulla  Is a corresponding author
  1. Department of Neuroscience, Tufts University School of Medicine, United States

Infections caused by the tapeworm Taenia solium are a major source of illness, especially in low- and middle-income countries (Torgerson et al., 2015). When the larvae of this parasite establish cysts in the brain, a condition that is known as neurocysticercosis, the consequences can include seizures and epilepsy. Indeed, neurocysticercosis is among the leading causes of adult-onset epilepsy worldwide (Ta and Blond, 2022; Nash et al., 2013), and a significant fraction (22–29%) of all epilepsy patients in sub-Saharan countries have neurocysticercosis (Owolabi et al., 2020; Ndimubanzi et al., 2010).

Seizures and epilepsy are thought to occur when the cysts burst and release their contents into the brain, and previous research has focused on the role of the brain’s neuroinflammatory response in the development of these conditions (Robinson et al., 2012). Interestingly Taenia solium larvae are thought to actively suppress the local immune response to their own presence, allowing them to reside in the brain for months or even years. However, besides the work on neuroinflammation, there has been little research into the effects of the larvae (and their secretions) on neuronal activity. Now, in eLife , Joseph Raimondo (University of Cape Town) and colleagues – including Anja de Lange and Hayley Tomes as joint first authors – report the results of experiments that explore the impact of larvae on the brain (de Lange et al., 2023). These results are directly relevant to understanding the pathogenesis of acute seizures (ictogenesis) and – since seizures beget seizures – also chronic epilepsy.

The key finding of the new work is that the larvae and their secretions contain a neurotransmitter called glutamate, with the level of glutamate being high enough to directly activate surrounding neurons. To show this, de Lange et al. first homogenized Taenia solium larvae and collected their excretion/secretion products. They then exposed neurons to these products, and showed that this exposure activated the neurons to fire action potentials. Moreover, if glutamate receptors in the neurons were blocked before exposure to the larval products, the neurons were not activated.

The researchers – who are based in Cape Town and at institutions in Australia, France, Germany, the UK and Zambia – then used fluorescent calcium imaging to study how local activation of neurons by the glutamate from the larvae affects local brain circuits. Rises in intracellular calcium are a proxy for neuronal activity, so imaging calcium allows the neuronal activity across brain circuits to be visualized. These imaging experiments confirmed that glutamate from the larvae caused local neuronal activation that led to the subsequent activation of synaptically connected neurons across distal brain circuits. The researchers also investigated other products excreted or secreted by the larvae that could potentially affect the firing of neurons (such as substance P, acetylcholine and potassium), but none of these had the same widespread impact as glutamate. The results were consistent, therefore, with glutamate from the larvae having a potential role in the generation and/or propagation of seizures.

Next, de Lange et al. showed that the larval products showed similar excitatory effects in in vitro brain tissue from both animal models and from resected human brain tissue. They also demonstrated that the glutamate can excite the surrounding brain tissue, which has been shown to drive later epilepsy in other studies (Zeidler et al., 2018). Moreover, it has previously been shown that glutamate released by brain tumors can induce epileptic activity (Buckingham et al., 2011; Sontheimer, 2008), and researchers are exploring ways to target glutamate release in order to prevent such seizures (Ghoochani et al., 2016).

Similar strategies may be beneficial when tackling neurocysticercosis to reduce seizures, or possibly even prevent the development of chronic epilepsy. This is critically important because millions of neurocysticercosis patients suffer from seizures and epilepsy. However, the latest study does not demonstrate that larval products cause seizures or epilepsy, as it was carried out at the level of single cells and small circuits with small volumes (just picoliters) of larval products, so for now we only know how neurocysticercosis leads to neuronal hyperexcitability. Future studies will be needed to understand the effects of larval products, and the larvae themselves, on larger circuits in vivo, and to explore if/how this pathological excitation leads to long-term changes in the brain that cause it to generate spontaneous recurring seizures. Non-glutamatergic mechanisms, including neuroimmunological processes, may also still be relevant to these changes.

This study moves the field closer to understanding epilepsy in human neurocysticercosis by providing exciting experimental evidence, and by also providing naturalistic, disease-relevant models that will enable the study of novel treatment approaches. It is also important because neurocysticercosis – a condition that disproportionately affects people in low-income and under-resourced countries – has not received sufficient attention in the past. The current findings from Cape Town may just have kickstarted much-needed research in neurocysticercosis by finding out what Taenia solium larvae do to the neuronal networks that surround them. Exciting!

Neurocysticercosis and epilepsy.

Taenia Solium is a parasite that can infect the brain and cause neurocysticercosis, which is a prevalent but poorly understood cause of acquired epilepsy. de Lange et al. have shown that Taenia Solium contains significant amounts of a neurotransmitter called glutamate, which can activate neurons and circuits of neurons. Future studies are required to establish a link between Taenia Solium, glutamate and epilepsy, but this study is an important first step in this direction.

References

Article and author information

Author details

  1. Zin-Juan Klaft

    Zin-Juan Klaft is in the Department of Neuroscience, Tufts University School of Medicine, Boston, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8208-7263
  2. Chris Dulla

    Chris Dulla is in the Department of Neuroscience, Tufts University School of Medicine, Boston, United States

    For correspondence
    chris.dulla@tufts.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6560-6535

Publication history

  1. Version of Record published:

Copyright

© 2023, Klaft and Dulla

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,748
    views
  • 56
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zin-Juan Klaft
  2. Chris Dulla
(2023)
Epilepsy: How parasitic larvae affect the brain
eLife 12:e91149.
https://doi.org/10.7554/eLife.91149
  1. Further reading

Further reading

    1. Neuroscience
    Steven S Hou, Yuya Ikegawa ... Masato Maesako
    Tools and Resources

    γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720–670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential ‘cell non-autonomous’ regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.

    1. Neuroscience
    John P Veillette, Fan Gao, Howard C Nusbaum
    Research Article

    Sensory signals from the body’s visceral organs (e.g. the heart) can robustly influence the perception of exteroceptive sensations. This interoceptive–exteroceptive interaction has been argued to underlie self-awareness by situating one’s perceptual awareness of exteroceptive stimuli in the context of one’s internal state, but studies probing cardiac influences on visual awareness have yielded conflicting findings. In this study, we presented separate grating stimuli to each of subjects’ eyes as in a classic binocular rivalry paradigm – measuring the duration for which each stimulus dominates in perception. However, we caused the gratings to ‘pulse’ at specific times relative to subjects’ real-time electrocardiogram, manipulating whether pulses occurred during cardiac systole, when baroreceptors signal to the brain that the heart has contracted, or in diastole when baroreceptors are silent. The influential ‘Baroreceptor Hypothesis’ predicts the effect of baroreceptive input on visual perception should be uniformly suppressive. In contrast, we observed that dominance durations increased for systole-entrained stimuli, inconsistent with the Baroreceptor Hypothesis. Furthermore, we show that this cardiac-dependent rivalry effect is preserved in subjects who are at-chance discriminating between systole-entrained and diastole-presented stimuli in a separate interoceptive awareness task, suggesting that our results are not dependent on conscious access to heartbeat sensations.