Differential interaction patterns of opioid analgesics with µ opioid receptors correlate with ligand-specific voltage sensitivity

  1. Sina B Kirchhofer
  2. Victor Jun Yu Lim
  3. Sebastian Ernst
  4. Noemi Karsai
  5. Ruland G Julia
  6. Meritxell Canals
  7. Peter Kolb  Is a corresponding author
  8. Moritz Bünemann  Is a corresponding author
  1. Philipp University of Marburg, Germany
  2. University of Nottingham, United Kingdom

Abstract

The µ opioid receptor (MOR) is the key target for analgesia, but the application of opioids is accompanied by several issues. There is a wide range of opioid analgesics, differing in their chemical structure and their properties of receptor activation and subsequent effects. A better understanding of ligand-receptor interactions and the resulting effects is important. Here, we calculated the respective binding poses for several opioids and analyzed interaction fingerprints between ligand and receptor. We further corroborated the interactions experimentally by cellular assays. As MOR was observed to display ligand-induced modulation of activity due to changes in membrane potential, we further analyzed the effects of voltage sensitivity on this receptor. Combining in silico and in vitro approaches, we defined discriminating interaction patterns responsible for ligand-specific voltage sensitivity and present new insights into their specific effects on activation of the MOR.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 3, 4, 5, 6.

Article and author information

Author details

  1. Sina B Kirchhofer

    Department of Pharmacology and Clinical Pharmacy, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6285-9054
  2. Victor Jun Yu Lim

    Department of Pharmaceutical Chemistry, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sebastian Ernst

    Department of Pharmacology and Clinical Pharmacy, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Noemi Karsai

    Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0000-3948-4071
  5. Ruland G Julia

    Department of Pharmacology and Clinical Pharmacy, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Meritxell Canals

    Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Kolb

    Department of Pharmaceutical Chemistry, Philipp University of Marburg, Marburg, Germany
    For correspondence
    peter.kolb@uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4089-614X
  8. Moritz Bünemann

    Department of Pharmacology and Clinical Pharmacy, Philipp University of Marburg, Marburg, Germany
    For correspondence
    Moritz.buenemann@staff.uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2259-4378

Funding

European Commission (H2020-MSCA- 860229)

  • Meritxell Canals

United Kingdom Academy of Medical Siences Proffessorship

  • Meritxell Canals

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton J Swartz, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Version history

  1. Received: July 25, 2023
  2. Accepted: November 19, 2023
  3. Accepted Manuscript published: November 20, 2023 (version 1)

Copyright

© 2023, Kirchhofer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 363
    Page views
  • 117
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sina B Kirchhofer
  2. Victor Jun Yu Lim
  3. Sebastian Ernst
  4. Noemi Karsai
  5. Ruland G Julia
  6. Meritxell Canals
  7. Peter Kolb
  8. Moritz Bünemann
(2023)
Differential interaction patterns of opioid analgesics with µ opioid receptors correlate with ligand-specific voltage sensitivity
eLife 12:e91291.
https://doi.org/10.7554/eLife.91291

Further reading

    1. Neuroscience
    Connon I Thomas, Melissa A Ryan ... Benjamin Scholl
    Research Article

    Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.

    1. Neuroscience
    Weiwei Qui, Chelsea R Hutch ... Darleen Sandoval
    Research Article

    Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.