Gut Health: The value of connections

High proportions of gut bacteria that produce their own food can be an indicator for poor gut health.
  1. Vanessa Rossetto Marcelino  Is a corresponding author
  1. Melbourne Integrative Genomics, School of Biosciences and Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Australia

The human gut is home to over 30 trillion microbes that form a complex ecosystem (Sender et al., 2016). Each person has a unique and dynamic set of microorganisms in their gut, and researchers have long tried to identify and untangle the reasons for this remarkable variation. The list of factors determining which microbes colonize an individual’s gut is extensive, ranging from diet to contact with pets and farm animals, geographical location, ethnicity, history of medications, and various other individual and lifestyle characteristics (Parizadeh and Arrieta, 2023).

The composition of the gut microbiome has also been linked to a range of health conditions, with loss of species diversity being a common hallmark of disturbed microbiomes (Bidell et al., 2022). These associations have fuelled the idea that the gut microbiome can be used as a non-invasive biomarker of health status, or to improve and maintain human health by introducing beneficial bacteria and removing pathogens from the gut.

However, it is still largely unclear whether changes in the microbiome are the cause or consequence of disease. The challenges in teasing apart the many intricate factors shaping microbiome composition constitute a major roadblock to translating the vast body of microbiome research into clinical practices. Now, in eLife, Iva Veseli (University of Chicago), Jessika Füssel, A. Murat Eren and colleagues report that the extent to which bacteria can synthetize their own food is a significant trait determining the composition of unhealthy gut microbiomes (Veseli et al., 2023).

The team – who are based at various research institutes in the United States, Denmark and Germany – analysed gut microbiomes associated with inflammatory bowel disease (IBD) and other gastrointestinal conditions. The diversity of microbes in these communities is typically low due to antibiotics, diarrhoea and other features linked to a stressed gut environment. Unlike most previous studies that looked at taxonomic or species composition, Veseli et al. investigated the genome content of bacteria, focusing on their capacity to produce and metabolize essential nutrients, such as amino acids, carbohydrates and vitamins.

They found that stressed gut environments contained bacteria whose genomes encoded complete pathways to biosynthesise essential nutrients – i.e., they show high metabolic independence. In contrast, bacterial genomes from healthy individuals contained seemingly incomplete metabolic pathways, suggesting that they rely more extensively on nutrients produced by their peers to survive, also known as cross-feeding (Figure 1).

Bacteria living in stressed and healthy gut environments have distinct metabolic potentials.

The stressed gut microbiome (left) is predominantly colonized by a low diversity of bacteria whose genomes encode pathways for synthesising a range of essential metabolites, represented by the coloured shapes. These ‘metabolically independent’ bacteria are expected to generate their own food. Conversely, gut microbiomes associated with healthy individuals (right) are enriched in bacteria that seem genetically incapable of synthesising all the nutrients they need, suggesting that they rely more extensively on nutrients produced by other bacteria.

Image credit: Figure created with BioRender.com.

Next, Veseli et al. asked whether the overall metabolic independence of gut bacteria could be used as a biomarker of health status. First, the team developed an open-source software platform to systematically quantify metabolic independence from high-throughput sequencing data. They applied their newly developed approach to over 300 deeply sequenced stool samples from individuals with IBD and healthy controls. They then showed that, with the help of machine learning, it is indeed possible to accurately identify individuals with IBD based entirely on the estimated self-sufficiency of their microbiome.

To expand the scope of their findings beyond IBD, Veseli et al. showed that a short dose of antibiotics taken by healthy volunteers leads to a sharp increase in the proportions of self-sufficient gut bacteria, followed by a gradual recovery of bacteria that seem to rely on cross-feeding. These results support the claim that high metabolic independence is a hallmark of poorly diverse, stressed gut ecosystems, which can be used as a biomarker of gut health status. Since it is based on mechanisms rather than the taxonomic identity of microbiome members, the approach proposed by Veseli et al. is likely to be more robust to the ethnicity, geographic location and lifestyle factors that have obscured associations between microbiomes and health status in the past (Sze and Schloss, 2016; Gaulke and Sharpton, 2018).

The implications of this study bring a new perspective to the microbiome field. Bacteria typically labelled as pathogens for their association with unhealthy microbiomes might not be causative disease agents as previosuly assumed. Instead, they might simply be the only ones capable of surviving in a poorly diverse gut. The study also adds key evidence to the growing awareness of the relationships between microbial cross-feeding and microbiome composition, paving the way to test interesting questions in future research (Wang et al., 2019; Marcelino et al., 2023; Gralka et al., 2020; Watson et al., 2023). For example, what are the roles of bacteria with high metabolic independence in re-establishing a healthy gut microbiome after disruption? If self-sufficient bacteria are at the bottom of the microbial food chain, one can wonder whether these presumed villains will become heroes in restoring the gut ecosystem. These new perspectives bring us one step closer to fully benefit from the diagnostic and therapeutic potential of the human gut microbiome.

References

Article and author information

Author details

  1. Vanessa Rossetto Marcelino

    Vanessa Rossetto Marcelino is in the Melbourne Integrative Genomics, School of Biosciences and Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia

    For correspondence
    vmarcelino@unimelb.edu.au
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1755-0597

Publication history

  1. Version of Record published: September 19, 2023 (version 1)

Copyright

© 2023, Rossetto Marcelino

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 563
    Page views
  • 45
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vanessa Rossetto Marcelino
(2023)
Gut Health: The value of connections
eLife 12:e92319.
https://doi.org/10.7554/eLife.92319

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Tony Zhang, Matthew Rosenberg ... Markus Meister
    Research Article

    An animal entering a new environment typically faces three challenges: explore the space for resources, memorize their locations, and navigate towards those targets as needed. Here we propose a neural algorithm that can solve all these problems and operates reliably in diverse and complex environments. At its core, the mechanism makes use of a behavioral module common to all motile animals, namely the ability to follow an odor to its source. We show how the brain can learn to generate internal “virtual odors” that guide the animal to any location of interest. This endotaxis algorithm can be implemented with a simple 3-layer neural circuit using only biologically realistic structures and learning rules. Several neural components of this scheme are found in brains from insects to humans. Nature may have evolved a general mechanism for search and navigation on the ancient backbone of chemotaxis.

    1. Computational and Systems Biology
    2. Neuroscience
    David O'Reilly, Ioannis Delis
    Tools and Resources

    The muscle synergy is a guiding concept in motor control research that relies on the general notion of muscles ‘working together’ towards task performance. However, although the synergy concept has provided valuable insights into motor coordination, muscle interactions have not been fully characterised with respect to task performance. Here, we address this research gap by proposing a novel perspective to the muscle synergy that assigns specific functional roles to muscle couplings by characterising their task-relevance. Our novel perspective provides nuance to the muscle synergy concept, demonstrating how muscular interactions can ‘work together’ in different ways: (1) irrespective of the task at hand but also (2) redundantly or (3) complementarily towards common task-goals. To establish this perspective, we leverage information- and network-theory and dimensionality reduction methods to include discrete and continuous task parameters directly during muscle synergy extraction. Specifically, we introduce co-information as a measure of the task-relevance of muscle interactions and use it to categorise such interactions as task-irrelevant (present across tasks), redundant (shared task information), or synergistic (different task information). To demonstrate these types of interactions in real data, we firstly apply the framework in a simple way, revealing its added functional and physiological relevance with respect to current approaches. We then apply the framework to large-scale datasets and extract generalizable and scale-invariant representations consisting of subnetworks of synchronised muscle couplings and distinct temporal patterns. The representations effectively capture the functional interplay between task end-goals and biomechanical affordances and the concurrent processing of functionally similar and complementary task information. The proposed framework unifies the capabilities of current approaches in capturing distinct motor features while providing novel insights and research opportunities through a nuanced perspective to the muscle synergy.