RNA Fusion in human retinal development

  1. Wen Wang
  2. Xiao Zhang
  3. Ning Zhao
  4. Ze-Hua Xu
  5. Kangxin Jin  Is a corresponding author
  6. Zi-Bing Jin  Is a corresponding author
  1. Capital Medical University, China
  2. Beijing Institute of Ophthalmology, China

Abstract

Chimeric RNAs have been found in both cancerous and healthy human cells. They have regulatory effects on human stem/progenitor cell differentiation, stemness maintenance and central nervous system (CNS) development. However, whether they are present in human retinal cells and their physiological functions in the retinal development remain unknown. Based on the human embryonic stem cell (hESC)-derived retinal organoids (ROs) spanning from day 0 to day 120, we present the expression atlas of chimeric RNAs throughout the developing ROs. We confirmed the existence of some common chimeric RNAs and also discovered many novel chimeric RNAs during retinal development. We focused on CTNNBIP1-CLSTN1 (CTCL) whose downregulation caused precocious neuronal differentiation and a marked reduction of neural progenitors in human cerebral organoids. CTCL is universally present in human retinas, retinal organoids and cell lines; however, its loss-of-function biased the progenitor cells toward retinal pigment epithelial (RPE) cell fate at the expense of retinal cells. Together, this work provides a landscape of chimeric RNAs and reveals evidence for their critical role in human retinal development.

Data availability

Sequencing data have been deposited in GSA under accession codes PRJCA020237.All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 4C and 5AB.

The following previously published data sets were used

Article and author information

Author details

  1. Wen Wang

    Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiao Zhang

    Beijing Institute of Ophthalmology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ning Zhao

    Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ze-Hua Xu

    Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Kangxin Jin

    Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
    For correspondence
    jinx@mail.ccmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0108-6948
  6. Zi-Bing Jin

    Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
    For correspondence
    jinzibing@foxmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0515-698X

Funding

National Natural Science Foundation of China (82125007)

  • Zi-Bing Jin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: One human retinal sample was included in this study, which was derived from a patient's donation. The study was approved by the Ethics Committee of Beijing Tongren Hospital (NO.TRECKY2021-089) and conducted in accordance with the Declaration of Helsinki.

Copyright

© 2024, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 880
    views
  • 245
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wen Wang
  2. Xiao Zhang
  3. Ning Zhao
  4. Ze-Hua Xu
  5. Kangxin Jin
  6. Zi-Bing Jin
(2024)
RNA Fusion in human retinal development
eLife 13:e92523.
https://doi.org/10.7554/eLife.92523

Share this article

https://doi.org/10.7554/eLife.92523

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Developmental Biology
    Yunfei Mu, Shijia Hu ... Hongjun Shi
    Research Article

    Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.