Feeding: How specific molecules can lead to overeating
Toasted marshmallows, roasted nuts and fried potatoes are just a few examples of foods that owe their unique taste to a chemical reaction that produces molecules called advanced glycation end-products. These compounds form when sugars react spontaneously with proteins or lipids without the involvement of enzymes. Modern processed foods, especially those subjected to high temperatures for long periods of time – as happens with grilling, roasting or frying – are particularly high in advanced glycation end-products (Liu et al., 2020), but these compounds can also be produced in the body during metabolic processes (Reddy et al., 2022).
Advanced glycation end-products (AGEs) have been linked to several medical conditions, particularly diabetes, where they contribute to tissue damage and inflammation (Ramasamy et al., 2005). More recent research suggests that they can also increase neuronal damage and reduce the life span of roundworms (Chaudhuri et al., 2016). Now, in eLife, Pankaj Kapahi and colleagues based at various research institutes in the United States – including Muniesh Muthaiyan Shanmugam (Buck Institute for Research on Aging) as first author – report on the intriguing connection between diet, molecular signaling, feeding behavior and neurodegeneration in the roundworm C. elegans (Muthaiyan Shanmugam et al., 2023).
Shanmugam et al. compared the food intake of healthy worms and knock-out worms that lacked an enzyme called GLOD-4, which is responsible for degrading a compound known as methylglyoxal, a precursor of many AGE compounds (Chaudhuri et al., 2016). The high level of AGE compounds in the knock-out worms appeared to increase their food intake (as indicated by a high pharyngeal pumping rate). Consuming the AGE compound hydroimidazolone also caused the healthy worms to eat more. This suggests that the relationship between the accumulation of AGE compounds and over-eating could be conserved across the animal kingdom.
The experiments also showed that the response to AGE compounds is gradual, not immediate, with a pronounced increase in food intake occurring 24 hours after the introduction of hydroimidazolone. This temporal dimension makes it more difficult to understand how dietary choices impact feeding behavior over time. RNA sequencing also revealed that genes that code for neurotransmitters, and genes that code for proteins regulating feeding behavior, were upregulated in the knock-out worms.
Previous research has shown that biogenic amines – biomolecules that contain one or more amine groups – play a role in feeding behavior throughout the animal kingdom (Greer et al., 2008). Given this, and the differential expression of genes observed in the knock-out worms, Shanmugam et al. investigated how mutations in genes related to the synthesis of amines affected food intake in worms exposed to hydroimidazolone. They found that mutations in an enzyme called TDC-1 – which is responsible for synthesizing the amine tyramine, the invertebrate equivalent of adrenaline – stopped the overfeeding that is usually induced by hydroimidazolone.
Moreover, glod-4 mutant animals without tyramine had decreased damage in their nervous system and longer lifespans. This suggests that tyramine is a key regulator of overeating induced by hydroimidazolone, but more research is needed to fully understand the role of this particular amine. The negative effects of AGE compounds in the knock-out worms could be due to excessive eating triggered by tyramine, or it might be that tyramine itself is causing damage, as noted in a previous study (De Rosa et al., 2019). Additionally, two G-protein-coupled receptors that respond to tyramine were also implicated in the process.
The study also unravels a critical aspect of how AGE compounds influence feeding behavior at a molecular level. Specifically, exposure to hydroimidazolone increases the transcription of the gene that codes for the enzyme TDC-1, and this upregulation relies on the presence of a transcription factor called ELT-3 (Figure 1). This finding enriches our understanding of the mechanisms through which AGE compounds impact feeding behavior.
It is becoming increasingly evident that AGE compounds actively participate in the regulation of physiological functions, rather than being passive byproducts of metabolic processes. The work of Shanmugam et al. demonstrates that, in C. elegans at least, overeating due to an accumulation of AGE compounds depends on the modulation of biogenic amine signals. This knowledge could contribute to a better understanding of a range of systemic diseases, including diabetes, obesity and various neurodegenerative disorders.
Shanmugam et al. also highlight the evolutionary importance of these processes. The changes to tyramine signaling responsible for the detrimental effects of AGE compounds in C. elegans raise the tantalizing possibility that aminergic modulation may have similar effects in humans. For example, prolonged adrenaline release in humans due to chronic stress has been associated with obesity, diabetes and premature aging (Yiallouris et al., 2019).
The work of Shanmugam et al. offers valuable insights into the interplay between dietary choices, molecular signaling and health. By unveiling a new pathway involving AGE compounds and aminergic signaling in C. elegans, this research enriches our understanding of the regulation of feeding behavior. It also encourages a re-evaluation of the impact of dietary AGE compounds on human health and motivates further exploration of their potential role in the development of chronic diseases.
References
-
Adrenal aging and its implications on stress responsiveness in humansFrontiers in Endocrinology 10:54.https://doi.org/10.3389/fendo.2019.00054
Article and author information
Author details
Publication history
Copyright
© 2023, Blanco and Rayes
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 894
- views
-
- 65
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Genetics and Genomics
Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.
-
- Developmental Biology
- Genetics and Genomics
O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.