Feeding: How specific molecules can lead to overeating
Toasted marshmallows, roasted nuts and fried potatoes are just a few examples of foods that owe their unique taste to a chemical reaction that produces molecules called advanced glycation end-products. These compounds form when sugars react spontaneously with proteins or lipids without the involvement of enzymes. Modern processed foods, especially those subjected to high temperatures for long periods of time – as happens with grilling, roasting or frying – are particularly high in advanced glycation end-products (Liu et al., 2020), but these compounds can also be produced in the body during metabolic processes (Reddy et al., 2022).
Advanced glycation end-products (AGEs) have been linked to several medical conditions, particularly diabetes, where they contribute to tissue damage and inflammation (Ramasamy et al., 2005). More recent research suggests that they can also increase neuronal damage and reduce the life span of roundworms (Chaudhuri et al., 2016). Now, in eLife, Pankaj Kapahi and colleagues based at various research institutes in the United States – including Muniesh Muthaiyan Shanmugam (Buck Institute for Research on Aging) as first author – report on the intriguing connection between diet, molecular signaling, feeding behavior and neurodegeneration in the roundworm C. elegans (Muthaiyan Shanmugam et al., 2023).
Shanmugam et al. compared the food intake of healthy worms and knock-out worms that lacked an enzyme called GLOD-4, which is responsible for degrading a compound known as methylglyoxal, a precursor of many AGE compounds (Chaudhuri et al., 2016). The high level of AGE compounds in the knock-out worms appeared to increase their food intake (as indicated by a high pharyngeal pumping rate). Consuming the AGE compound hydroimidazolone also caused the healthy worms to eat more. This suggests that the relationship between the accumulation of AGE compounds and over-eating could be conserved across the animal kingdom.
The experiments also showed that the response to AGE compounds is gradual, not immediate, with a pronounced increase in food intake occurring 24 hours after the introduction of hydroimidazolone. This temporal dimension makes it more difficult to understand how dietary choices impact feeding behavior over time. RNA sequencing also revealed that genes that code for neurotransmitters, and genes that code for proteins regulating feeding behavior, were upregulated in the knock-out worms.
Previous research has shown that biogenic amines – biomolecules that contain one or more amine groups – play a role in feeding behavior throughout the animal kingdom (Greer et al., 2008). Given this, and the differential expression of genes observed in the knock-out worms, Shanmugam et al. investigated how mutations in genes related to the synthesis of amines affected food intake in worms exposed to hydroimidazolone. They found that mutations in an enzyme called TDC-1 – which is responsible for synthesizing the amine tyramine, the invertebrate equivalent of adrenaline – stopped the overfeeding that is usually induced by hydroimidazolone.
Moreover, glod-4 mutant animals without tyramine had decreased damage in their nervous system and longer lifespans. This suggests that tyramine is a key regulator of overeating induced by hydroimidazolone, but more research is needed to fully understand the role of this particular amine. The negative effects of AGE compounds in the knock-out worms could be due to excessive eating triggered by tyramine, or it might be that tyramine itself is causing damage, as noted in a previous study (De Rosa et al., 2019). Additionally, two G-protein-coupled receptors that respond to tyramine were also implicated in the process.
The study also unravels a critical aspect of how AGE compounds influence feeding behavior at a molecular level. Specifically, exposure to hydroimidazolone increases the transcription of the gene that codes for the enzyme TDC-1, and this upregulation relies on the presence of a transcription factor called ELT-3 (Figure 1). This finding enriches our understanding of the mechanisms through which AGE compounds impact feeding behavior.

The relationship between AGE compounds and food intake.
Advanced glycation end-products (AGEs) can accumulate due to dietary intake (top left) or due to a lack of enzymes that break down their precursors (bottom left). This accumulation leads to the build-up of an AGE compound called hydroimidazolone (MG-H1), which stimulates the overexpression of tyramine through the ELT-2/GATA transcription factor pathway (top middle). The upregulation of tyramine promotes increased food intake, which, in turn, further increases the amount of hydroimidazolone in the body. This positive feedback loop, mediated by AGE compounds, ultimately reduces the lifespan of C. elegans (top right), and also accelerates neurodegeneration (bottom right).
It is becoming increasingly evident that AGE compounds actively participate in the regulation of physiological functions, rather than being passive byproducts of metabolic processes. The work of Shanmugam et al. demonstrates that, in C. elegans at least, overeating due to an accumulation of AGE compounds depends on the modulation of biogenic amine signals. This knowledge could contribute to a better understanding of a range of systemic diseases, including diabetes, obesity and various neurodegenerative disorders.
Shanmugam et al. also highlight the evolutionary importance of these processes. The changes to tyramine signaling responsible for the detrimental effects of AGE compounds in C. elegans raise the tantalizing possibility that aminergic modulation may have similar effects in humans. For example, prolonged adrenaline release in humans due to chronic stress has been associated with obesity, diabetes and premature aging (Yiallouris et al., 2019).
The work of Shanmugam et al. offers valuable insights into the interplay between dietary choices, molecular signaling and health. By unveiling a new pathway involving AGE compounds and aminergic signaling in C. elegans, this research enriches our understanding of the regulation of feeding behavior. It also encourages a re-evaluation of the impact of dietary AGE compounds on human health and motivates further exploration of their potential role in the development of chronic diseases.
References
-
Adrenal aging and its implications on stress responsiveness in humansFrontiers in Endocrinology 10:54.https://doi.org/10.3389/fendo.2019.00054
Article and author information
Author details
Publication history
Copyright
© 2023, Blanco and Rayes
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 903
- views
-
- 67
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
Flavin-containing monooxygenases (FMOs) are a conserved family of xenobiotic enzymes upregulated in multiple longevity interventions, including nematode and mouse models. Previous work supports that C. elegans fmo-2 promotes longevity, stress resistance, and healthspan by rewiring endogenous metabolism. However, there are five C. elegans FMOs and five mammalian FMOs, and it is not known whether promoting longevity and health benefits is a conserved role of this gene family. Here, we report that expression of C. elegans fmo-4 promotes lifespan extension and paraquat stress resistance downstream of both dietary restriction and inhibition of mTOR. We find that overexpression of fmo-4 in just the hypodermis is sufficient for these benefits, and that this expression significantly modifies the transcriptome. By analyzing changes in gene expression, we find that genes related to calcium signaling are significantly altered downstream of fmo-4 expression. Highlighting the importance of calcium homeostasis in this pathway, fmo-4 overexpressing animals are sensitive to thapsigargin, an ER stressor that inhibits calcium flux from the cytosol to the ER lumen. This calcium/fmo-4 interaction is solidified by data showing that modulating intracellular calcium with either small molecules or genetics can change expression of fmo-4 and/or interact with fmo-4 to affect lifespan and stress resistance. Further analysis supports a pathway where fmo-4 modulates calcium homeostasis downstream of activating transcription factor-6 (atf-6), whose knockdown induces and requires fmo-4 expression. Together, our data identify fmo-4 as a longevity-promoting gene whose actions interact with known longevity pathways and calcium homeostasis.
-
- Genetics and Genomics
One of the goals of synthetic biology is to enable the design of arbitrary molecular circuits with programmable inputs and outputs. Such circuits bridge the properties of electronic and natural circuits, processing information in a predictable manner within living cells. Genome editing is a potentially powerful component of synthetic molecular circuits, whether for modulating the expression of a target gene or for stably recording information to genomic DNA. However, programming molecular events such as protein-protein interactions or induced proximity as triggers for genome editing remains challenging. Here, we demonstrate a strategy termed ‘P3 editing’, which links protein-protein proximity to the formation of a functional CRISPR-Cas9 dual-component guide RNA. By engineering the crRNA:tracrRNA interaction, we demonstrate that various known protein-protein interactions, as well as the chemically induced dimerization of protein domains, can be used to activate prime editing or base editing in human cells. Additionally, we explore how P3 editing can incorporate outputs from ADAR-based RNA sensors, potentially allowing specific RNAs to induce specific genome edits within a larger circuit. Our strategy enhances the controllability of CRISPR-based genome editing, facilitating its use in synthetic molecular circuits deployed in living cells.