Archaea: Exploring surface structures
Archaea and bacteria have much in common: both are single-celled microorganisms, and neither has a nucleus – so they are both prokaryotes. Archaea are also found in all the niches inhabited by bacteria. However, archaea can also survive in extreme niches where bacteria cannot. Most archaea live in very cold conditions, but they can also live in hot springs, or near deep-sea vents where temperatures can exceed 100 degrees Celsius, or in the extremely high pressures found at the bottom of the ocean. Other archaea can survive in conditions that are extremely saline, alkaline or acidic (down to pH 0), and some can even thrive in petroleum deposits deep underground.
How can archaea survive in these environments? And how, in particular, can archaeal cells withstand the extremes of temperature, pressure, salinity and pH that they are subjected to? The cell envelope in a prokaryote includes a cell wall that provides structural integrity, and a membrane that encloses the cytoplasm of the cell. There are important differences in the constituents and construction of the cell wall in archaea and bacteria, but there are also similarities, notably the presence in almost all archaea, as well as many bacteria, of a two-dimensional lattice called a surface layer (Sleytr et al., 1988; Bharat et al., 2021). These layers are made of subunits called surface-layer proteins (SLPs), and unlike what happens in bacteria, the surface layer in archaea – with just a few exceptions – must interact with the cytoplasmic membrane (Albers and Meyer, 2011; Rodrigues-Oliveira et al., 2017). Moreover, prokaryotes must synthesize, translocate to the cell surface, and incorporate into the existing lattice at least 500 copies of each SLP every second to maintain the surface layer (Sleytr et al., 1999).
In some archaea the surface layer is made of two different SLPs, although only one of these need interact with the cytoplasmic membrane. However, there is much about two-component surface layers that we do not fully understand. Now, in eLife, Bertram Daum from the University of Exeter and co-workers – including Lavinia Gambelli as first author – report details of an in situ atomic model of a two-component surface layer that sheds new light on the dynamics and assembly of these structures (Gambelli et al., 2024). The study was performed with samples from Sulfolobus acidocaldarius, an archaeal species that lives in hot springs, and relied on a combination of experimental techniques – notably cryo electron microscopy and cryo electron tomography – and a software package called Alphafold2 that predicts protein structures.
The surface layer in S. acidocaldarius is made of two proteins: SlaA is a Y-shaped soluble protein rich in β-strands, while SlaB contains three consecutive β-sandwich domains and a membrane-bound coiled-coil domain at its C-terminus (Figure 1A and B). In previous work Gambelli et al. had shown that the unit cell of the surface layer was hexagonal and contained three dimers of SlaA and a trimer of SlaB (Figure 1C; Gambelli et al., 2019).
Now they show that the SlaA dimers assemble into a sheet with a thickness of 9.5 nm, and that the individual proteins adopt an angle of about 28° with respect to the plane of the cytoplasmic membrane. This sheet is anchored to the cytoplasmic membrane by the SlaB trimers – which have their long axes perpendicular to the SlaA sheet– to create a canopy-like framework with an overall thickness of 35 nm (Figure 1D). One of the reasons why the SlaA sheet is robust is because the SlaA proteins have formed dimers. However, there is also some flexibility in the structure because two of the six domains in each SlaA protein – the two domains nearest the C-terminus – do not adopt fixed positions, and are thus free to move to some extent.
Surface layers have already shown potential for applications in biotechnology, medicine and environmental science, and an improved understanding of these structures could lead to further applications in fields as diverse as ultrafiltration membranes and biosensors (Pfeifer et al., 2021; Pfeifer et al., 2022; Douglas et al., 1986). These applications in the real world are a long way from the extreme environments in which archaea are often found.
References
-
The archaeal cell envelopeNature Reviews Microbiology 9:414–426.https://doi.org/10.1038/nrmicro2576
-
Molecular logic of prokaryotic surface layer structuresTrends in Microbiology 29:405–415.https://doi.org/10.1016/j.tim.2020.09.009
-
Archaea biotechnologyBiotechnology Advances 47:107668.https://doi.org/10.1016/j.biotechadv.2020.107668
-
Archaeal S-layers: Overview and current state of the artFrontiers in Microbiology 8:2597.https://doi.org/10.3389/fmicb.2017.02597
Article and author information
Author details
Publication history
Copyright
© 2024, Schuster
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 271
- views
-
- 32
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Structural Biology and Molecular Biophysics
MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild-type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.
-
- Structural Biology and Molecular Biophysics
The KCNH family of potassium channels serves relevant physiological functions in both excitable and non-excitable cells, reflected in the massive consequences of mutations or pharmacological manipulation of their function. This group of channels shares structural homology with other voltage-gated K+ channels, but the mechanisms of gating in this family show significant differences with respect to the canonical electromechanical coupling in these molecules. In particular, the large intracellular domains of KCNH channels play a crucial role in gating that is still only partly understood. Using KCNH1(KV10.1) as a model, we have characterized the behavior of a series of modified channels that could not be explained by the current models. With electrophysiological and biochemical methods combined with mathematical modeling, we show that the uncovering of an open state can explain the behavior of the mutants. This open state, which is not detectable in wild-type channels, appears to lack the rapid flicker block of the conventional open state. Because it is accessed from deep closed states, it elucidates intermediate gating events well ahead of channel opening in the wild type. This allowed us to study gating steps prior to opening, which, for example, explain the mechanism of gating inhibition by Ca2+-Calmodulin and generate a model that describes the characteristic features of KCNH channels gating.