Vision: Paying attention
In many ways, we discover the world by looking at it. Through rapid eye movements – known as saccades – we can turn our gaze to specific objects, enabling us to pay attention to and scrutinize objects that are of high importance at the time. As well as this overt form of attention, we can also attend to objects in our periphery covertly (without moving the gaze).
Both covert and overt attention can be directed endogenously (on purpose) or exogenously – automatically attracted by a conspicuous stimulus, such as a sudden light (e.g., Carrasco, 2011). It has been shown that the brain processes required for covert attention and overt saccades are linked. Just before a saccade is directed at a target object, covert attention is already present, improving perception of the target (for example, see Deubel and Schneider, 1996; Hoffman and Subramaniam, 1995). Therefore, before a saccade begins, covert and overt attention seem to be coupled.
Most research on this topic has focused on how the coupling of covert attention and saccade planning supports visual perception. Now, in eLife, Allison Goldstein, Terrence Stanford and Emilio Salinas report insights into how paying covert attention to a peripheral object influences the subsequent saccade towards or away from the object (Goldstein et al., 2024).
The team (who are based at Wake Forest School of Medicine) asked participants to look at a central stimulus, which disappeared and was then replaced by two stimuli to the left and right. One of these peripheral stimuli (called the ‘cue’ stimulus) took one of two colors, indicating whether participants should look towards it (pro-saccade) or away from it (anti-saccade). The second peripheral stimulus, known as the non-cue, was always the same color. The location of the cue stimulus remained the same throughout a block of trials, meaning that participants knew its location and could attend to it covertly.
To investigate how this covert attendance of the cue stimulus affected the next saccade to the same or opposite location, Goldstein et al. combined the task with time pressure. Participants were instructed to saccade within a certain time after the initial center stimulus disappeared. The time between the center stimulus disappearing and the cue stimulus appearing varied. Sometimes, the cue followed shortly, informing the saccade. However, other times, the cue followed later, increasing the time pressure such that participants needed to saccade before the cue in order to meet the deadline. This was used to examine how performance (i.e., whether participants’ saccades were directed at the correct stimulus) was affected by these differences in cue time (before saccade).
The experiments showed that when the cue stimulus was visible too briefly to inform the saccade, performance was the same as it would if participants had guessed where to look (Figure 1B). When the cue was visible for longer, performance rose to a high level, indicating that the cue guided the saccade. Goldstein et al. also discovered that to saccade successfully, that is, to reach a set level of performance, participants needed the cue to be visible for about 30ms longer for anti-saccades than for pro-saccades (Figure 1B). This suggests that covert attention is directed at the cue initially, supporting saccades toward it, but this influence can be overcome quickly (in ~30ms), if the cue has indicated the saccade should be made away from the cue stimulus.
Bright stimuli more strongly attract covert attention and exogenous overt saccades. By manipulating the brightness of cue and non-cue stimuli using dark backgrounds, Goldstein et al. influenced how saccades were automatically attracted to the stimuli, irrespective of whether the cue was pro- or anti-saccade. Brighter stimuli captured the gaze more strongly. Therefore, if participants were to look at a brighter cue stimulus, performance increased for a brief period (Figure 1C).
Interestingly, after this exogenous influence on performance, the relationship between performance and cue-viewing-time quickly moved in the opposite direction. This suggests that after the automatic capture of gaze, the exogenous influence seemed suppressed and facilitated saccades in the opposite direction. The brief suppression worked against the endogenous control of the saccade based on the cue, which manifested later as a gradual rise of performance toward its maximum. This suggests that the two forms of saccade control rely on independent underlying mechanisms.
In sum, Goldstein et al.’s findings reveal that saccades depend on where voluntary, covert attention is deployed before, but that this dependency can be overcome quickly. They also show that the gaze is attracted by conspicuous stimuli automatically, but that this attraction is suppressed afterwards, and eye movements become intentionally driven. The findings are based on a time pressure task that can require saccades to both possible locations to be planned before the cue, resulting in guesses if time pressure becomes too high. It is an open question how covert attention affects the next intentional saccade in more naturalistic situations, where upcoming saccades cannot be planned in such a way.
References
-
Visual attention: the past 25 yearsVision Research 51:1484–1525.https://doi.org/10.1016/j.visres.2011.04.012
-
The role of visual attention in saccadic eye movementsPerception & Psychophysics 57:787–795.https://doi.org/10.3758/BF03206794
Article and author information
Author details
Publication history
Copyright
© 2024, Poth
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 419
- views
-
- 41
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.
-
- Neuroscience
Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.