Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

  1. Shaogeng Tang
  2. W Mike Henne
  3. Peter P Borbat
  4. Nicholas J Buchkovich
  5. Jack H Freed
  6. Yuxin Mao
  7. J Christopher Fromme
  8. Scott D Emr  Is a corresponding author
  1. Cornell University, United States
  2. The University of Texas Southwestern Medical Center, United States
  3. The Pennsylvania State University College of Medicine, United States

Abstract

The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling.

Article and author information

Author details

  1. Shaogeng Tang

    Weill Institute of Cell and Molecuar Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. W Mike Henne

    Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter P Borbat

    National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas J Buchkovich

    Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jack H Freed

    National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuxin Mao

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. J Christopher Fromme

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott D Emr

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    For correspondence
    sde26@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. William I Weis, Stanford University, Bangladesh

Version history

  1. Received: October 24, 2015
  2. Accepted: December 13, 2015
  3. Accepted Manuscript published: December 15, 2015 (version 1)
  4. Version of Record published: January 13, 2016 (version 2)

Copyright

© 2015, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,126
    views
  • 1,153
    downloads
  • 122
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shaogeng Tang
  2. W Mike Henne
  3. Peter P Borbat
  4. Nicholas J Buchkovich
  5. Jack H Freed
  6. Yuxin Mao
  7. J Christopher Fromme
  8. Scott D Emr
(2015)
Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments
eLife 4:e12548.
https://doi.org/10.7554/eLife.12548

Share this article

https://doi.org/10.7554/eLife.12548

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.