Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

  1. Ruzbeh Mosadeghi
  2. Kurt M Reichermeier
  3. Martin Winkler
  4. Anne Schreiber
  5. Justin M Reitsma
  6. Yaru Zhang
  7. Florian Stengel
  8. Junyue Cao
  9. Minsoo Kim
  10. Michael J Sweredoski
  11. Sonja Hess
  12. Alexander Leitner
  13. Ruedi Aebersold
  14. Matthias Peter
  15. Raymond J Deshaies
  16. Radoslav I Enchev  Is a corresponding author
  1. University of Southern California, United States
  2. California Instittute of Technology, United States
  3. Swiss Federal Institute of Technology, Switzerland
  4. University of Konstanz, Germany
  5. California Institute of Technology, United States

Abstract

The COP9-Signalosome (CSN) regulates cullin-RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network.

Article and author information

Author details

  1. Ruzbeh Mosadeghi

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Kurt M Reichermeier

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Martin Winkler

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  4. Anne Schreiber

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Justin M Reitsma

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. Yaru Zhang

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  7. Florian Stengel

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  8. Junyue Cao

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  9. Minsoo Kim

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  10. Michael J Sweredoski

    Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  11. Sonja Hess

    Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  12. Alexander Leitner

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  13. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  14. Matthias Peter

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  15. Raymond J Deshaies

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    Raymond J Deshaies, Reviewing editor, eLife.
  16. Radoslav I Enchev

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    For correspondence
    radoslav.enchev@bc.biol.ethz.ch
    Competing interests
    No competing interests declared.

Copyright

© 2016, Mosadeghi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,392
    views
  • 1,124
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruzbeh Mosadeghi
  2. Kurt M Reichermeier
  3. Martin Winkler
  4. Anne Schreiber
  5. Justin M Reitsma
  6. Yaru Zhang
  7. Florian Stengel
  8. Junyue Cao
  9. Minsoo Kim
  10. Michael J Sweredoski
  11. Sonja Hess
  12. Alexander Leitner
  13. Ruedi Aebersold
  14. Matthias Peter
  15. Raymond J Deshaies
  16. Radoslav I Enchev
(2016)
Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle
eLife 5:e12102.
https://doi.org/10.7554/eLife.12102

Share this article

https://doi.org/10.7554/eLife.12102

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.