Sequestration of host metabolism by an intracellular pathogen

  1. Lena Gehre
  2. Olivier Gorgette
  3. Stéphanie Perrinet
  4. Marie-Christine Prevost
  5. Mathieu Ducatez
  6. Amanda M Giebel
  7. David E Nelson
  8. Steven G Ball
  9. Agathe Subtil  Is a corresponding author
  1. Institut Pasteur, France
  2. Université de Lille, France
  3. Indiana University Bloomington, United States
  4. Indiana University School of Medicine, United States

Abstract

For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.

Article and author information

Author details

  1. Lena Gehre

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivier Gorgette

    Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Stéphanie Perrinet

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Christine Prevost

    Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Mathieu Ducatez

    Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda M Giebel

    Department of Biology, Indiana University Bloomington, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David E Nelson

    Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven G Ball

    Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Agathe Subtil

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    For correspondence
    asubtil@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Gehre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,498
    views
  • 795
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lena Gehre
  2. Olivier Gorgette
  3. Stéphanie Perrinet
  4. Marie-Christine Prevost
  5. Mathieu Ducatez
  6. Amanda M Giebel
  7. David E Nelson
  8. Steven G Ball
  9. Agathe Subtil
(2016)
Sequestration of host metabolism by an intracellular pathogen
eLife 5:e12552.
https://doi.org/10.7554/eLife.12552

Share this article

https://doi.org/10.7554/eLife.12552

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Priyanka Das, Alejandro Aballay, Jogender Singh
    Research Article

    Calcineurin is a highly conserved calcium/calmodulin-dependent serine/threonine protein phosphatase with diverse functions. Inhibition of calcineurin is known to enhance the lifespan of Caenorhabditis elegans through multiple signaling pathways. Aiming to study the role of calcineurin in regulating innate immunity, we discover that calcineurin is required for the rhythmic defecation motor program (DMP) in C. elegans. Calcineurin inhibition leads to defects in the DMP, resulting in intestinal bloating, rapid colonization of the gut by bacteria, and increased susceptibility to bacterial infection. We demonstrate that intestinal bloating caused by calcineurin inhibition mimics the effects of calorie restriction, resulting in enhanced lifespan. The TFEB ortholog, HLH-30, is required for lifespan extension mediated by calcineurin inhibition. Finally, we show that the nuclear hormone receptor, NHR-8, is upregulated by calcineurin inhibition and is necessary for the increased lifespan. Our studies uncover a role for calcineurin in the C. elegans DMP and provide a new mechanism for calcineurin inhibition-mediated longevity extension.

    1. Cell Biology
    Jessica E Schwarz, Antonijo Mrčela ... Amita Sehgal
    Short Report

    Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25–30) and old (age 70–76) individuals at 14:00 and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at initiating robust ~24 hr oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera promote cycling of different sets of genes. Genes that lose rhythmicity with old serum entrainment are associated with oxidative phosphorylation and Alzheimer’s Disease as identified by STRING and IPA analyses. Conversely, the expression of cycling genes associated with cholesterol biosynthesis increased in the cells entrained with old serum. Genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions. We did not observe a global difference in the distribution of phase between groups, but found that peak expression of several clock-controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lagged in the cells synchronized ex vivo with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect circadian rhythms in peripheral cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.