Sequestration of host metabolism by an intracellular pathogen

  1. Lena Gehre
  2. Olivier Gorgette
  3. Stéphanie Perrinet
  4. Marie-Christine Prevost
  5. Mathieu Ducatez
  6. Amanda M Giebel
  7. David E Nelson
  8. Steven G Ball
  9. Agathe Subtil  Is a corresponding author
  1. Institut Pasteur, France
  2. Université de Lille, France
  3. Indiana University Bloomington, United States
  4. Indiana University School of Medicine, United States

Abstract

For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.

Article and author information

Author details

  1. Lena Gehre

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivier Gorgette

    Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Stéphanie Perrinet

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Christine Prevost

    Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Mathieu Ducatez

    Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda M Giebel

    Department of Biology, Indiana University Bloomington, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David E Nelson

    Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven G Ball

    Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Agathe Subtil

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    For correspondence
    asubtil@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Version history

  1. Received: October 28, 2015
  2. Accepted: March 15, 2016
  3. Accepted Manuscript published: March 16, 2016 (version 1)
  4. Version of Record published: April 8, 2016 (version 2)

Copyright

© 2016, Gehre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,460
    views
  • 790
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lena Gehre
  2. Olivier Gorgette
  3. Stéphanie Perrinet
  4. Marie-Christine Prevost
  5. Mathieu Ducatez
  6. Amanda M Giebel
  7. David E Nelson
  8. Steven G Ball
  9. Agathe Subtil
(2016)
Sequestration of host metabolism by an intracellular pathogen
eLife 5:e12552.
https://doi.org/10.7554/eLife.12552

Share this article

https://doi.org/10.7554/eLife.12552

Further reading

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.