Lip movements entrain the observers' low-frequency brain oscillations to facilitate speech intelligibility

  1. Hyojin Park  Is a corresponding author
  2. Christoph Kayser
  3. Gregor Thut
  4. Joachim Gross
  1. University of Glasgow, United Kingdom

Abstract

During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker's lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker's lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing.

Article and author information

Author details

  1. Hyojin Park

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Hyojin.Park@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Christoph Kayser

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregor Thut

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Joachim Gross

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: This study was approved by the local ethics committee (CSE01321; University of Glasgow, Faculty of Information and Mathematical Sciences) and conducted in conformity with the Declaration of Helsinki. All participants provided informed written consent before participating in the experiment and received monetary compensation for their participation.

Copyright

© 2016, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,808
    views
  • 844
    downloads
  • 134
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hyojin Park
  2. Christoph Kayser
  3. Gregor Thut
  4. Joachim Gross
(2016)
Lip movements entrain the observers' low-frequency brain oscillations to facilitate speech intelligibility
eLife 5:e14521.
https://doi.org/10.7554/eLife.14521

Share this article

https://doi.org/10.7554/eLife.14521

Further reading

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.