Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages

  1. Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
  2. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
  3. Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
  4. Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Detlef Weigel
    Max Planck Institute for Biology Tübingen, Tübingen, Germany
  • Senior Editor
    Detlef Weigel
    Max Planck Institute for Biology Tübingen, Tübingen, Germany

Reviewer #1 (Public Review):

Summary:

In this excellent manuscript by Egan et al., the authors very carefully dissect the roles of inflammasome components in restricting Salmonella Typhimurium (STm) replication in human macrophages. They show that caspase-1 is essential to mediating inflammasome responses and that caspase-4 contributes to bacterial restriction at later time points. The authors show very clear roles for the host proteins that mediate terminal lysis, gasdermin D and ninjurin-1. The unique finding in this study is that in the absence of inflammasome responses, Salmonella hypereplicates within the cytosol of macrophages. These findings suggest that caspase-1 and possibly caspase-4 play roles in restricting the replication of Salmonella in the cytosol as well as in the Salmonella containing vacuole.

Strengths:

  1. The genetic and biochemical approaches have shown for the first time in human macrophages that the caspase-1-GSDMD-NINJ1 axis is very important for restricting intracellular STm replication. In addition, they demonstrate a later role for Casp4 in control of intracellular bacterial replication.

  2. In addition, they show that in macrophages deficient in the caspase-1-GSDMD-NINJ1 axis that STm are found replicating in the cytosol, which is a novel finding. The electron microscopy is convincing that STm are in the cytosol.

  3. The authors go on to use a chloroquine resistance assay to show that inflammasome signaling also restricts STm within SCVs in human macrophages.

  4. Finally, they show that the Type 3 Secretion System encoded on Salmonella Pathogenicity Island 1 contributes to STm's cytosolic access in human macrophages.

Weaknesses:

  1. Their results with human macrophages suggest that there are differences between murine and human macrophages in inflammasome-mediated restriction of STm growth. For example, Thurston et al. showed that in murine macrophages that inflammasome activation controls the replication of mutant STm that aberrantly invades the cytosol, but only slightly limits replication of WT STm. In contrast, here the authors found that primed human macrophages rely on caspase-1, gasdermin D and ninjurin-1 to restrict WT STm. I wonder if the priming of the human macrophages in this study could account for the differences in these studies. Along those lines, do the authors see the same results presented in this study in the absence of priming the macrophages with Pam3CSK4. I think that determining whether the control of intracellular STm replication is dependent on priming is very important. Another difference with the Thurston et al. paper is the way that the STm inoculum was prepared - stationary phase bacteria that were opsonized. Could this also account for differences between the two studies rather than differences between murine and human macrophages in inflammasome-dependent control of STm?

  2. The authors show that the pore-forming proteins GSDMD and Ninj1 contribute to control of STm replication in human macrophages. Is it possible that leakage of gentamicin from the media contributes to this control?

  3. One major question that remains to be answered is whether casp-1 plays a direct role in the intracellular localization of STm. If the authors quantify the percentage of vacuolar vs. cytosolic bacteria at early time points in WT and casp-1 KO macrophages, would that be the same in the presence and absence of casp-1? If so, then this would suggest that there is a basal level of bacterial-dependent lysis of the SCV and in WT macrophages the presence of cytosolic PAMPS trigger cell death and bacteria can't replicate in the cytosol. However, in the inflammasome KO macrophages, the host cell remains alive and bacteria can replicate in the cytosol.

Reviewer #2 (Public Review):

Summary:

This work addresses the question of how human macrophages restrict intracellular replication of Salmonella.

Strengths:

Through a series of genetic knockouts and using specific inhibitors, Egan et al. demonstrated that the inflammasome components caspase-1, caspase-4, gasdermin D (GSDMD), and the final lytic death effector ninjurin-1 (NINJ1) are required for control of Salmonella replication in human macrophages. Interestingly, caspase-1 proved crucial in restricting Salmonella early during infection, whereas caspase-4 was essential in the later stages of infection. Furthermore, using a chloroquine resistance assay and state-of-the-art microscopy, the authors found that NAIP receptor and caspase-1 mostly regulate replication of cytosolic bacteria, with smaller, yet significant, impact on the vacuolar bacteria.

The finding that inflammasomes are critical in the restriction of replication of intracellular Salmonella in human macrophages contrasts with the published minimal role of inflammasomes in restriction of replication of intracellular Salmonella in murine macrophages. These findings demonstrate yet another example of interspecies and intercellular differences in regulation of bacterial infections by the immune system.

Weaknesses: none.

Reviewer #3 (Public Review):

The manuscript by Egan and coworkers investigates how Caspase-1 and Caspase-4 mediated cell death affects replication of Salmonella in human THP-1 macrophages in vitro.

Overall evaluation:

Strength of the study include the use of human cells, which exhibit notable differences (e.g., Caspase 11 vs Caspase-4/5) compared to commonly used murine models. Furthermore, the study combines inhibitors with host and bacterial genetics to elucidate mechanistic links.

The main weaknesses of the study are the inherent limitations of tissue culture models. For example, to study interaction of Salmonella with host cells in vitro, it is necessary to kill extracellular bacteria using gentamicin. However, since Salmonella-induced macrophage cell death damages the cytosolic membrane, gentamicin can reach intracellular bacteria and contribute to changes in CFU observed in tissue culture models (major point 1). This can result in tissue culture "artefacts" (i.e., observations/conclusions that cannot be recapitulated in vivo). For example, intracellular replication of Salmonella in murine macrophages requires T3SS-2 in vitro, but T3SS-2 is dispensable for replication in macrophages of the spleen in vivo (Grant et al., 2012).

Major comments:

In Figure 1: are increased CFU in WT vs CASP1-deficient THP-1 cells due to Caspase 1 restricting intracellular replication or due to Caspase-1 causing pore formation to allow gentamicin to enter the cytosol thereby restricting bacterial replication? The same question arises about Caspase-4 in Figure 2, where differences in CFU are observed only at 24h when differences in cell death also become apparent. The idea that gentamicin entering the cytosol through pores is responsible for controlling intracellular Salmonella replication is also consistent with the finding that GSDMD-mediated pore formation is required for restricting intracellular Salmonella replication (Figure 3). Similarly, the finding that inflammasome responses primarily control Salmonella replication in the cytosol could be explained by an intact SCV membrane protecting Salmonella from gentamicin (Figure 5).

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation