Author response:
The following is the authors’ response to the previous reviews.
eLife assessment
This manuscript represents a cleanly designed experiment for assessing biological motion processing in children (mean age = 9) with and without ADHD. The group differences concerning accuracy in global and local motion processing abilities are solid, but the analyses suggesting dissociable relationships between global and local processing and social skills, age, and IQ are inconclusive. The results are useful in terms of understanding ADHD and the ontogenesis of different components of the processing of biological motion.
We thank the editors and reviewers for their valuable feedback and constructive comments. We have carefully considered each point raised by the reviewers and made the necessary revisions to the manuscript. Regarding the relationships between global and local BM processing, the accumulated evidence from previous studies has converged on the dissociation of the two BM components, e.g., while global BM processing is susceptible to learning and practice, local BM processing does not show a learning trend (Chang and Troje, 2009; Grossman et al., 2004), and the brain activations in response to local and global BM cues are different (Chang et al., 2018; Duarte et al., 2022). Nevertheless, we concurred with reviewers that the evidence for such dissociation from the current study by itself is not strong enough. Therefore, we have toned down on this point and no longer claimed the dissociation (including the title). Based on the current results, we focused our discussion on the different aspects of BM processing in children with and without ADHD.
Public Reviews:
Reviewer #1 (Public Review):
Summary:
The paper presents a nice study investigating the impairments of biological motion perception in individuals with ADHD in comparison with neurotypical controls. Motivated by the idea that there is a relationship between biological motion perception and social capabilities, the authors investigated the impairments of local and global (holistic) biological motion perception, the diagnosis status, and several additional behavioral variables that are affected in ADHS (IQ, social responsiveness, and attention / impulsivity). As well local as global biological motion perception is impaired in ADHD individuals. In addition, the study demonstrates a significant correlation between local biological motion perception skills and the social responsiveness score in the ADHD group, but not in controls. A path analysis in the ADHD group suggests that general performance in biological motion perception is influenced mainly by global biological motion perception performance and attentional and perceptual reasoning skills.
Strengths:
It is true that there exists not much work on biological motion perception and ADHD. Therefore, the presented study contributes an interesting new result to the biological motion literature, and adds potentially also new behavioral markers for this clinical group. The design of the study is straightforward and technically sound, and the drawn conclusions are supported by the presented results.
Thanks for this positive assessment of our work.
Weaknesses:
Some of the claims about the relationship between genetic factors and ADHD and the components of biological motion processing have to remain speculative at this point because genetic influences were not explicitly tested in this paper. Specifically, the hypothesis that the perception of human social interaction is critically based on a local mechanism for the detection of asymmetry in foot trajectories of walkers (this is what 'BL-local' really measures), or on the detection of live agents in cluttered scenes seems not very plausible.
Thanks for these comments. We agree that the relationship between genetic factors and BM perception remains to be further examined, as we did not test the genetic influences in this study. We have deleted relavant discussion about genetics. Based on our results, we discuss the possible mechanisms behind the relationship between local BM processing and social interaction in the revised manuscript as follows:
“As mentioned above, we found a significant negative correlation between the SRS total score and the accuracy of local BM processing, specifically in the ADHD group. This could be due to decreased visual input related to atypical local BM processing, which further impairs global BM processing. According to the two-process theory of biological motion processing61, local BM cues guide visual attention towards BM stimuli55,62. Consequently, the visual input of BM stimuli increases, facilitating the development of the ability to process global BM cues through learning21,63. The latter is a prerequisite for attributing intentions to others and facilitating social interactions with other individuals20,64,65. Thus, atypical local BM processing may contribute to impaired social interaction through altered visual inputs. Further empirical studies are required to confirm these hypotheses.” (lines 417 - 428)
Based on my last comments, now the discussion has been changed in a way that tries to justify the speculative claims by citing a lot of other speculative papers, which does not really address the problem. For example, the fact that chicks walk towards biological motion stimuli is interesting. To derive that this verifies a fundamental mechanism in human biological motion processing is extremely questionable, given that birds do not even have a cortex. Taking the argumentation of the authors serious, one would have to assume that the 'Local BM' mechanism is probably located in the mesencephalon in humans, and then would have to interact in some way with social perception differences of ADHD children. To me all this seems to make very strong (over-)claims. I suggest providing a much more modest interpretation of the interesting experimental result, based on what has been really experimentally shown by the authors and closely related other data, rather than providing lots of far-reaching speculations.
In the same direction, in my view, go claims like 'local BM is an intrinsic trait' (L. 448) , which is not only imprecise (maybe better 'mechanisms of processing of local BM cues') but also rather questionable. Likely, this' local processing of BM' is a lower level mechanisms, located probably in early and mid-levels of the visual cortex, with a possible influence of lower structures. It seems not really plausible that this is related to a classical trait variables in the sense of psychology, like personality, as seems to be suggested here. Also here I suggest a much more moderate and less speculative interpretation of the results.
We thank the reviewer for pointing out these issues. According to these comments, we have carefully revised the discussion to avoid strong (over-) claims. We have deleted the example of chicks, but substituted with more empirical studies to explain our results. We agree that the Local BM mechanism is probably located in subcortical regions in humans, which were reported by some MRI studies (Chang et al., 2018; Hirai and Senju, 2020; Loula et al., 2005). We have added some evidence that atypical local BM processing may decrease visual inputs related to social information as follows:
“According to the two-process theory of biological motion processing61, local BM cues guide visual attention towards BM stimuli55,62. Consequently, the visual input of BM stimuli increases, facilitating the development of the ability to process global BM cues through learning21,63. The latter is a prerequisite for attributing intentions to others and facilitating social interactions with other individuals20,64,65. Thus, atypical local BM processing may contribute to impaired social interaction through altered visual inputs.” (lines 421 - 427)
We have also deleted the clarims of 'local BM is an intrinsic trait' (originally L. 448) and related discussion as it was not conclusive based on the current study.
Reviewer #2 (Public Review):
Summary:
Tian et al. aimed to assess differences in biological motion (BM) perception between children with and without ADHD, as well as relationships to indices of social functioning and possible predictors of BM perception (including demographics, reasoning ability and inattention). In their study, children with ADHD showed poorer performance relative to typically developing children in three tasks measuring local, global, and general BM perception. The authors further observed that across the whole sample, performance in all three BM tasks was negatively correlated with scores on the social responsiveness scale (SRS), whereas within groups a significant relationship to SRS scores was only observed in the ADHD group and for the local BM task. Local and global BM perception showed a dissociation in that global BM processing was predicted by age, while local BM perception was not. Finally, general (local & global combined) BM processing was predicted by age and global BM processing, while reasoning ability mediated the effect of inattention on BM processing.
Strengths:
Overall, the manuscript is presented in a clear fashion and methods and materials are presented with sufficient detail so the study could be reproduced by independent researchers. The study uses an innovative, albeit not novel, paradigm to investigate two independent processes underlying BM perception. The results are novel and have the potential to have wide-reaching impact on multiple fields.
We appreciate the reviewer’s positive feedback very much.
Weaknesses:
The manuscript has greatly improved in clarity and methodological considerations in response to the review. There are only a few minor points which deserve the authors' attention:
When outlining the moviation for the current study, results from studies in ADHD and ASD are used too interchangeably. The authors use a lack of evidence for contributing (psychological/developmental) factors on BM processing in ASD to motivate the present study and refer to evidence for differences between typical and non-typical BM processing using studies in both ASD and ADHD. While there are certainly overlapping features between the two conditions/neurotypes, they are not to be considered identical and may have distinct etiologies, therefore the distinction between the two should be made clearer.
We thank the reviewer for pointing out this issue. We have removed some unnecessary citations about ASD and referred to studies about social cognition in ADHD to elaborate the motivation of this study:
“Further exploration of a diverse range of social cognitions (e.g., biological motion perception) can provide a fresh perspective on the impaired social function observed in ADHD. Moreover, recent studies have indicated that the social cognition in ADHD may vary depending on different factors at the cognitive, pathological, or developmental levels, such as general cognitive impairment5, symptoms severity8, or age5. Nevertheless, understanding how these factors relate to social cognitive dysfunction of in ADHD is still in its infancy. Bridging this gap is crucial as it can help depict the developmental trajectory of social cognition and identify effective interventions for impaired social interaction in individuals with ADHD.” (lines 53 - 62)
In the first/main analysis, is unclear to me why in the revised manuscript the authors changed the statistical method from ANOVA/ANCOVA to independent samples t-tests (unless the latter were only used for post-hoc comparisons, then this needs to be stated). Furthermore, although p-values look robust, for this analysis too it should be indicated whether and how multiple comparison problems were accounted for.
Thanks for the reviewer’s comments. According to the suggestions from reviewer #3, it may be inapposite to regard gender as a covariate in ANOVA, which may violate the assumptions of ANCOVA. To ensure that gender does not influence the results, firstly, we separated boys and girls on the plots with different coloured individual data points, and there are no signs of a gender effect in their TD group. Secondly, we use t-tests to examine the difference between TD and ADHD groups. Finally, we conducted a subsampling analysis with balanced data, and the results remained consistent.
In part 1 of the results, we aimed to compare the task accuracies between the TD and ADHD groups in three independent tasks, which assess the participants’ abilities to process three types of BM cues. We assumed that individuals with ADHD show poorer performance in three tasks compared to TD individuals. With regard to that, we consider that multiple comparisons may not be necessary.
Reviewer #3 (Public Review):
Strengths:
The authors present differences between ADHD and TD children in biological motion processing, and this question has not received as much attention as equivalent processing capabilities in autism. They use a task that appears well controlled. They raise some interesting mechanistic possibilities for differences in local and global motion processing, which are distinctions worth exploring. The group differences will therefore be of interest to those studying ADHD, as well as other developmental conditions, and those examining biological motion processing mechanisms in general.
We appreciate the reviewer’s positive assessment of this work.
Weaknesses:
The data are not strong enough to support claims about differences between global and lobal processing wrt social communication skills and age. The mechanistic possibilities for why these abilities may dissociate in such a way are interesting, but the crucial tests of differences between correlations do not present a clear picture. Further empirical work would be needed to test the authors' claims. Specifics:
The authors state frequently that it was the local BM task that related to social communication skills (SRS) and not the global tasks. However, the results section shows a correlation between SRS and all three tasks. The only difference is that when looking specifically within the ADHD group, the correlation is only significant for the local task. The supplementary materials demonstrate that tests of differences between correlations present an incomplete picture. Currently they have small samples for correlations, so this is unsurprising.
Thanks for this comment. We agree with the reviewer that the relationship between local and global processing with social communication and age needs more expirical work. Based on our results, there are only possible dissociable roles of local and global BM processing. The accumulated evidence from previous studies has converged on this dissociation, e.g., whild global BM processing is susceptible to learning and practice, local BM processing does not show a learning trend (Chang and Troje, 2009; Grossman et al., 2004), and the brain activations in response to local and global BM cues are different (Chang et al., 2018; Duarte et al., 2022). We concurred with reviewers that the evidence for such dissociation from the current study by itself is not strong enough. Therefore, we have toned down on this point and no longer emphasized the dissociation. Based on the current results, we focused our discussion on the different aspects of BM processing in children with and without ADHD. Future studies with larger sample sizes are needed to confirm this disociable relationship.
Theoretical assumptions. The authors make some statements about local vs global biological motion processing that should still be made more tentatively. They assume that local processing is specifically genetically whereas global processing is a product of experience. These data in newborn chicks are controversial and confounded - I cannot remember the specifics but I think there an upper vs lower visual field complexity difference here.
We appreciate the reviewer’s suggestion. We agree that the relationship between genetic factors and BM perception remains to be further examined as we didn’t perform any genetic analysis in the current study. Some speculative papers have been removed, so do the statement about newborn chicks given the controversial and confounded results. We have toned down our claims and povided a moderate interpretation of the results:
“Sensitivity to local BM cues emerges early in life54,55 and involves rapid processing in the subcortical regions16,56-58. As a basic pre-attentive feature23, local BM cues can guide visual attention spontaneously59,60. In contrary, the ability to process global BM cues is related to slow cortical BM processing and is influenced by many factors such as attention25,26 and visual experience21,51. As mentioned above, we found a significant negative correlation between the SRS total score and the accuracy of local BM processing, specifically in the ADHD group. This could be due to decreased visual input related to atypical local BM processing, which further impairs global BM processing. According to the two-process theory of biological motion processing61, local BM cues guide visual attention towards BM stimuli55,62. Consequently, the visual input of BM stimuli increases, facilitating the development of the ability to process global BM cues through learning21,63. The latter is a prerequisite for attributing intentions to others and facilitating social interactions with other individuals20,64,65. Thus, atypical local BM processing may contribute to impaired social interaction through altered visual inputs.” (lines 413 - 427)
“Few developmental studies have been conducted on local BM processing. The ability to process local BM cues remained stable and did not exhibit a learning trend21,25. A reasonable interpretation may be that local BM processing is a low-level mechanism, probably performed by the primary visual cortex and subcortical regions such as the superior colliculus, pulvinar, and ventral lateral nucleus14,56,61.” (lines 441- 446)
Readability. The manuscript needs very careful proofreading and correction for grammar. There are grammatical errors throughout.
Thank the reviewer for this feedback. We have performed thorough proofreading and corrected grammatical errors throughout the manuscript.
Recommendations for the authors:
Reviewer #1 (Recommendations For The Authors):
I thank the authors for their revisions that address several of the minor points that I raised in my last review. A number of requests are still not sufficiently answered:
L. 290 ff.: These model 'BM-local = age + gender etc ' is a pretty sloppy notation. I think what is meant that a GLM was used that uses the predictors genderetc. time appropriate beta_i values. This formulas should be corrected or one just says that a GLM was run with the predictors gender
The same criticism applies to these other models that follow.
This was corrected.
However, the corrected text remains sloppy: example: 'BM-locaL = ...' What exacty is 'BM-Local' the accuracy? etc. Here a precise notation shoudl be given that clearly names which variables are used here as predictors and target variables.
We appreciate the reviewer’s suggestion. We clarified which variables are used in our model and gived them precise notations:
“Three linear models were built to investigate the contributing factors: (a) ACClocal = β0 + β1 * age + β2 * gender + β3 * FIQ + β4 * QbInattention, (b) ACCglobal = β0 + β1 * age + β2 * gender + β3 * FIQ + β4 * QbInattention, and (c) ACCgeneral = β0 + β1 * age + β2 * gender + β3 * FIQ + β4 * QbInattention + β5 * ACClocal + β6 * ACCglobal. ACClocal, ACCglobal and ACCgeneral refer to the response accuracies of the three tasks in the ADHD group, and QbInattention is the standardised score for sustained attention function.” (lines 337 - 343)
All these models assume linearity of the combination of the predictors. was this assumption verified?
We referred to the previous study of BM perception in children. They found main predictor variables, including IQ (Rutherford et al., 2012; Jones et al., 2011) and age (Annaz et al., 2010; van et al., 2016), have a linear relation with the ability of BM processing.
This answer is insufficient and not convincing. Because a variable Y depends linearly on predictor A and B in some other study, this does not imply that is is also linear in predictor C, or does not show interactions with such predictors in the present study.
What is needed here is the testing of models with interaction terms and verifying that such models are not better predictors. If authors do not want to do this, they need at least to clearly point out that they made the strong assumption of linearity of their model, which might be wrong and thus be a substantial limitation of their analysis.
Thanks for the suggestion. We tried to compare each possible mode with and without relative interactions. The results showed that the change of Coefficient of Determination (R-squared, R2) between the two models was not statistically significant.
L. 296ff.: For model (b) it looks like general BM performance is strongly driven by the predictor global BM performance in the ADHD group. Does the same observation also apply to the controls?
The same phenomenon was not observed in TD children. We have briefly discussed this point in the Discussion section of the revised manuscript (lines 449 - 459).
Was such a path analysis also done for the TD subjects or not? If yes, was then also predicted that the variable BM-Global largely and directedly influences the variable BM-General? (The answer refers to the general discussion section, where no such analysis is presented, as far as I understand.)
Thank you for your comment. We also conduct a path analysis similar to that in the ADHD group. There is no statistically significant mediator effect in the TD group. Please see Figure S3 for complete statistics.
Reviewer #2 (Recommendations For The Authors):
(1) Please add public access to the data repository so data availability can be assessed.
The data analyzed during the study is available at https://osf.io/37p5s/.
(2) Lines 119-115: The differences observed in ADHD participants in the studies referenced here were relative to what group? The last sentence here also refers to two groups, and it is difficult to gather which specific groups are meant, also because the two references relate to both ADHD and ASD samples. Please clarify.
The suggestion is well taken. We have clarified the expressions accordingly:
“Specifically, compared with the typically developing (TD) group, children with ADHD showed reduced activity of motion-sensitive components (N200) while watching biological and scrambled motions, although no behavioural differences were observed. Another study found that children with ADHD performed worse in BM detection with moderate noise ratios than the TD group32.” (lines 100 - 105)
(3) Line 116: I'm not sure what is meant by 'despite initial indications' - please briefly specify/summarise here why the investigation into BM processing in ADHD is warranted.
Thank the reviewer for pointing out this issue. We rephrase this part and briefly specify “why the investigation into BM processing in ADHD is warranted”:
“Despite initial findings about atypical BM perception in ADHD, previous studies on ADHD treated BM perception as a single entity, which may have led to misleading or inconsistent findings28. Hence, it is essential to deconstruct BM processing into multiple components and motion features.” (lines 108 -111)
(4) Lines 290-293: Please complete the sentence.
Thank the reviewer for pointing out this issue. Th sentence has been completed:
“For Task 2 and 3, where children were asked to detect the presence or discriminate the facing direction of the target walker, TD group have higher accuracies than the ADHD group (Task 2 - TD: 0.70 ± 0.12, ADHD: 0.59 ± 0.12, t73 = 3.677, p < 0.001, Cohen's d = 0.861; Task 3 - TD: 0.79 ± 0.12, ADHD: 0.63 ± 0.17, t73 = 4.702, p < 0.001, Cohen's d = 1.100).” (lines 284 - 288)
Reviewer #3 (Recommendations For The Authors):
(1) Conclusions concerning differences between the local and global tasks wrt SRS and age (see above). I believe the authors need to reword throughout to reflect that the tests of differences between these crucial correlations did not present a clear picture.
We have reworded throughout the paper to reflect the inconclusiveness with regard to the relationship between local and global processing with social communication based on this study only. Future studies with larger sample sizes are needed to confirm this conclusion. The mechanism for this dissociable relationship should be validated by more psychologial tests in the future studies.
(2) I would again tone down the discussion of genetic specification of local processing, given it is highly controversial.
We thank the reviewer for pointing out the issue. We agree the point about the genetic specification of local processing remains controversial. The interpretation of results about local BM processing has been rephrased. Please refer to our response to the point #2 mentioned.
(3) The manuscript needs very careful proofreading and grammatical correction throughout.
Thanks for the suggestion to check the grammar. We have carefully proofread the manuscript to correct grammatical errors