Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorOwen TamplinUniversity of Wisconsin-Madison, Madison, United States of America
- Senior EditorUtpal BanerjeeUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public Review):
Summary:
In this research article, the authors utilized the zebrafish embryo to explore the idea that two different cell types emerge with different morphodynamics from the floor of the dorsal aorta based on their apicobasal polarity establishment. The hypothesis that the apical-luminal polarity of the membrane could be maintained after EHT and confer different functionality to the cell is exciting, however, this could not be established. There is a general lack of data supporting several of the main statements and conclusions. In addition, the manuscript is difficult to follow and needs refinement. We present below some questions and suggestions with the goal of guiding the authors to improve the manuscript and solidify their findings.
Strengths:
New transgenic zebrafish lines developed. Challenging imaging.
Weaknesses:
1. The authors conclude that the truncated version of Podxl2 fused to a fluorophore is enriched within the apical site of the cell. However, based on the images provided, an alternative interpretation is that the portion of the membrane within the apical side is less stretched than in the luminal side, and therefore the fluorophore is more concentrated and easier to identify by confocal. This alternative interpretation is also supported by data presented later in the paper where the authors demonstrate that the early HE is not polarized (membranes are not under tension and stretched yet). Could the authors confirm their interpretation with a different technique/marker like TEM?
2. Could the authors confirm that the engulfed membranes are vacuoles as they claimed, using, for example, TEM? Why is it concluded that "these vacuoles appear to emanate from the abluminal membrane (facing the sub-aortic space) and not from the lumen?" This is not clear from the data presented.
3. It is unclear why the authors conclude that "their dynamics appears to depend on the activity of aquaporins and it is very possible that aquaporins are active in zebrafish too, although rather in EHT cells late in their emergence and/or in post-EHT cells, for water chase and vacuolar regression as proposed in our model (Figure 1 - figure supplement 1B)." In our opinion, these figures do not confirm this statement.
4. Could the authors prove and show data for their conclusions "We observed that both EHT pol+ and EHT pol- cells divide during the emergence"; "both EHT pol+ and EHT pol- cells express reporters driven by the hematopoietic marker CD41 (data not shown), which indicates that they are both endowed with hematopoietic potential"; and "the full recovery of their respective morphodynamic characteristics (not shown)?".
5. The authors do not demonstrate the conclusion traced from Fig. 2B. Is there a fusion of the vacuoles to the apical side in the EHT pol+ cells? Do the cells inheriting less vacuoles result in pol- EHT? It looks like the legend for Fig. 2-fig supp is missing.
6. The title of the paper "Tuning apico-basal polarity and junctional recycling in the hemogenic endothelium orchestrates pre-hematopoietic stem cell emergence complexity" could be interpreted as functional heterogeneity within the HSCs, which is not demonstrated in this work. A more conservative title denoting that there are two types of EHT from the DA could avoid misinterpretations and be more appropriate.
7. There are several conclusions not supported by data: "Finally, we have estimated that the ratio between EHT pol+ and EHT pol- cells is of approximately 2/1". "We observed that both EHT pol+ and EHT pol- cells divide during the emergence and remain with their respective morphological characteristics". "We also observed that both EHT pol+ and EHT pol- cells express reporters driven by the hematopoietic marker CD41 (data not shown), which indicates that they are both endowed with hematopoietic potential." These conclusions are key in the paper, and therefore they should be supported by data.
Reviewer #2 (Public Review):
In this study, Torcq and colleagues make careful observations of the cellular morphology of haemogenic endothelium undergoing endothelial to haematopoietic transition (EHT) to become stem cells, using the zebrafish model. To achieve this, they used an extensive array of transgenic lines driving fluorescent markers, markers of apico-basal polarity (podocalixin-FP fusions), or tight junction markers (jamb-FP fusions). The use of the runx truncation to block native Runx1 only in endothelial cells is an elegant tool to achieve something akin to tissue-specific deletion of Runx1. Overall, the imaging data is of excellent quality. They demonstrate that differences in apico-basal polarity are strongly associated with different cellular morphologies of cells undergoing EHT from HE (EHT pol- and EHT pol+) which raises the exciting possibility that these morphological differences reflect the heterogeneity of HE (and therefore HSCs) at a very early stage. They then overexpress a truncated form of Runx1 (just the runt domain) to block Runx1 function and show that more HE cells abort EHT and remain associated with the embryonic dorsal aorta. They identify pard3aa and pard3ab as potential regulators of cell polarity. However, despite showing that loss of runx1 function leads to (late) decreases in the expression of these genes, no evidence for their role in EHT is presented. The FRAP experiments and the 2d-cartography, albeit very elegant, are difficult to interpret and not very clearly described throughout the text, making interpretation difficult for someone less familiar with the techniques. Finally, while it is clear that ArhGEF11 is playing an important role in defining cell shapes and junctions between cells during EHT, there is very little statistical evidence to support the limited data presented in the (very beautiful) images.
There is a sense that this work is both overwhelming in terms of the sheer amount of imaging data, and the work behind it to generate all the lines they required, and at the same time that there is very little evidence supporting the assertion that pard3 (and even ArhGEF11) are important mediators of cell morphology and cell fate in the context of EHT. For instance, the pard3 expression data, and levels after blocking runx1 (part of Figure 3 and Figure 4) don't particularly add to the manuscript beyond indicating that the pard3 genes are regulated by Runx1.
Weaknesses
The writing style is quite convoluted and could be simplified for clarity. For example, there is plenty of discussion and speculation throughout the presentation of the results. A clearer separation of the results from this speculation/discussion would help with understanding. Figures are frequently presented out of order in the text; modifying the figures to accommodate the flow of the text (or the other way around) - would make it much easier to follow the narrative. While the evidence for the different cellular morphologies of cells undergoing EHT is strong, the main claim (or at least the title of the manuscript) that tuning apico-basal polarity and junctional recycling orchestrate stem cell emergence complexity is not well supported by the data.