CellSeg3D: self-supervised 3D cell segmentation for light-sheet microscopy

  1. Brain Mind Institute & Neuro X, École Polytechnique Fédérale de Lausanne (EPFL). Geneva, Switzerland
  2. Wyss Center for Bio and Neuroengineering. Geneva, Switzerland

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Albert Cardona
    University of Cambridge, Cambridge, United Kingdom
  • Senior Editor
    Albert Cardona
    University of Cambridge, Cambridge, United Kingdom

Reviewer #1 (Public review):

This work presents a self-supervised method for the segmentation of 3D cells in microscopy images, an annotated dataset, as well as a napari plugin. While the napari plugin is potentially useful, there is insufficient evidence in the manuscript to support the claim that the proposed method is able to segment cells in other light-sheet microscopy image datasets than the four specific ones used here.

I acknowledge that the revision is now more upfront about the scope of this work. However, my main point still stands: even with the slight modifications to the title, this paper suggests to present a general method for self-supervised 3D cell segmentation in light-sheet microscopy data. This claim is simply not backed up.

I still think the authors should spell out the assumptions that underlie their method early on (cells need to be well separated and clearly distinguishable from background). A subordinate clause like "often in cleared neural tissue" does not serve this purpose. First, it implies that the method is also suitable for non-cleared tissue (which would have to be shown). Second, this statement does not convey the crucial assumptions of well separated cells and clear foreground/background differences that the method is presumably relying on.

It does appear that the proposed method works very well on the four investigated datasets, compared to other pre-trained or fine-tuned models. However, it still remains unclear whether this is because of the proposed method or the properties of those specific datasets (namely: well isolated cells that are easily distinguished from the background). I disagree with the authors that a comparison to non-learning methods "is unnecessary and beyond the scope of this work". In my opinion, this is exactly what is needed to proof that CellSeg3D's performance can not be matched with simple image processing.

As I mentioned in the original review, it appears that thresholding followed by connected component analysis already produces competitive segmentations. I am confused about the authors' reply stating that "[this] is not the case, as all the other leading methods we fairly benchmark cannot solve the task without deep learning". The methods against which CellSeg3D is compared are CellPose and StarDist, both are deep-learning based methods. That those methods do not perform well on this dataset does not imply that a simpler method (like thresholding) would not lead to competitive results. Again, I strongly suggest the authors include a simple, non-learning based baseline method in their analysis, e.g.:
* comparison to thresholding (with the same post-processing as the proposed method)
* comparison to a normalized cut segmentation (with the same post-processing as the proposed method)

Regarding my feedback about the napari plugin, I apologize if I was not clear. The plugin "works" as far as I tested it (i.e., it can be installed and used without errors). However, I was not able to recreate a segmentation on the provided dataset using the plugin alone (see my comments in the original review). I used the current master as available at the time of the original review and default settings in the plugin.

Reviewer #1 (Public review):

This work presents a self-supervised method for the segmentation of 3D cells in microscopy images, an annotated dataset, as well as a napari plugin. While the napari plugin is potentially useful, there is insufficient evidence in the manuscript to support the claim that the proposed method is able to segment cells in other light-sheet microscopy image datasets than the four specific ones used here.

I acknowledge that the revision is now more upfront about the scope of this work. However, my main point still stands: even with the slight modifications to the title, this paper suggests to present a general method for self-supervised 3D cell segmentation in light-sheet microscopy data. This claim is simply not backed up.

I still think the authors should spell out the assumptions that underlie their method early on (cells need to be well separated and clearly distinguishable from background). A subordinate clause like "often in cleared neural tissue" does not serve this purpose. First, it implies that the method is also suitable for non-cleared tissue (which would have to be shown). Second, this statement does not convey the crucial assumptions of well separated cells and clear foreground/background differences that the method is presumably relying on.

It does appear that the proposed method works very well on the four investigated datasets, compared to other pre-trained or fine-tuned models. However, it still remains unclear whether this is because of the proposed method or the properties of those specific datasets (namely: well isolated cells that are easily distinguished from the background). I disagree with the authors that a comparison to non-learning methods "is unnecessary and beyond the scope of this work". In my opinion, this is exactly what is needed to proof that CellSeg3D's performance can not be matched with simple image processing.

As I mentioned in the original review, it appears that thresholding followed by connected component analysis already produces competitive segmentations. I am confused about the authors' reply stating that "[this] is not the case, as all the other leading methods we fairly benchmark cannot solve the task without deep learning". The methods against which CellSeg3D is compared are CellPose and StarDist, both are deep-learning based methods. That those methods do not perform well on this dataset does not imply that a simpler method (like thresholding) would not lead to competitive results. Again, I strongly suggest the authors include a simple, non-learning based baseline method in their analysis, e.g.:
* comparison to thresholding (with the same post-processing as the proposed method)
* comparison to a normalized cut segmentation (with the same post-processing as the proposed method)

Regarding my feedback about the napari plugin, I apologize if I was not clear. The plugin "works" as far as I tested it (i.e., it can be installed and used without errors). However, I was not able to recreate a segmentation on the provided dataset using the plugin alone (see my comments in the original review). I used the current master as available at the time of the original review and default settings in the plugin.

Author response:

The following is the authors’ response to the original reviews.

Public Reviews:

Reviewer #1 (Public Review):

This work makes several contributions: (1) a method for the self-supervised segmentation of cells in 3D microscopy images, (2) an cell-segmented dataset comprising six volumes from a mesoSPIM sample of a mouse brain, and (3) a napari plugin to apply and train the proposed method.

First, thanks for acknowledging our contributions of a new tool, new dataset, and new software.

(1) Method

This work presents itself as a generalizable method contribution with a wide scope: self-supervised 3D cell segmentation in microscopy images. My main critique is that there is almost no evidence for the proposed method to have that wide of a scope. Instead, the paper is more akin to a case report that shows that a particular self-supervised method is good enough to segment cells in two datasets with specific properties.

First, thanks for acknowledging our contributions of a new tool, new dataset, and new software. We agree we focus on lightsheet microscopy data, therefore to narrow the scope we have changed the title to “CellSeg3D: self-supervised 3D cell segmentation for light-sheet microscopy”.

To support the claim that their method "address[es] the inherent complexity of quantifying cells in 3D volumes", the method should be evaluated in a comprehensive study including different kinds of light and electron microscopy images, different markers, and resolutions to cover the diversity of microscopy images that both title and abstract are alluding to.

You have selectively dropped the last part of that sentence that is key: “.... 3D volumes, often in cleared neural tissue” – which is what we tackle. The next sentence goes on to say: “We offer a new 3D mesoSPIM dataset and show that CellSeg3D can match state-of-the-art supervised methods.” Thus, we literally make it clear our claims are on MesoSPIM and cleared data.

The main dataset used here (a mesoSPIM dataset of a whole mouse brain) features well-isolated cells that are easily distinguishable from the background. Otsu thresholding followed by a connected component analysis already segments most of those cells correctly.

This is not the case, as all the other leading methods we fairly benchmark cannot solve the task without deep learning (i.e., no method is at an F1-Score of 1).

The proposed method relies on an intensity-based segmentation method (a soft version of a normalized cut) and has at least five free parameters (radius, intensity, and spatial sigma for SoftNCut, as well as a morphological closing radius, and a merge threshold for touching cells in the post-processing). Given the benefit of tweaking parameters (like thresholds, morphological operation radii, and expected object sizes), it would be illuminating to know how other non-learning-based methods will compare on this dataset, especially if given the same treatment of segmentation post-processing that the proposed method receives. After inspecting the WNet3D predictions (using the napari plugin) on the used datasets I find them almost identical to the raw intensity values, casting doubt as to whether the high segmentation accuracy is really due to the self-supervised learning or instead a function of the post-processing pipeline after thresholding.

First, thanks for testing our tool, and glad it works for you. The deep learning methods we use cannot “solve” this dataset, and we also have a F1-Score (dice) of ~0.8 with our self-supervised method. We don’t see the value in applying non-learning methods; this is unnecessary and beyond the scope of this work.

I suggest the following baselines be included to better understand how much of the segmentation accuracy is due to parameter tweaking on the considered datasets versus a novel method contribution:

* comparison to thresholding (with the same post-processing as the proposed method) * comparison to a normalized cut segmentation (with the same post-processing as the proposed method)

* comparison to references 8 and 9.

Ref 8 and 9 don’t have readily usable (https://github.com/LiangHann/USAR) or even shared code (https://github.com/Kaiseem/AD-GAN), so re-implementing this work is well beyond the bounds of this paper. We benchmarked Cellpose, StartDist, SegResNets, and a transformer – SwinURNet. Moreover, models in the MONAI package can be used. Note, to our knowledge the transformer results also are a new contribution that the Reviewer does not acknowledge.

I further strongly encourage the authors to discuss the limitations of their method. From what I understand, the proposed method works only on well-separated objects (due to the semantic segmentation bottleneck), is based on contrastive FG/BG intensity values (due to the SoftNCut loss), and requires tuning of a few parameters (which might be challenging if no ground-truth is available).

We added text on limitations. Thanks for this suggestion.

(2) Dataset

I commend the authors for providing ground-truth labels for more than 2500 cells. I would appreciate it if the Methods section could mention how exactly the cells were labelled. I found a good overlap between the ground truth and Otsu thresholding of the intensity images. Was the ground truth generated by proofreading an initial automatic segmentation, or entirely done by hand? If the former, which method was used to generate the initial segmentation, and are there any concerns that the ground truth might be biased towards a given segmentation method?

In the already submitted version, we have a 5-page DataSet card that fully answers your questions. They are ALL labeled by hand, without any semi-automatic process.

In our main text we even stated “Using whole-brain data from mice we cropped small regions and human annotated in 3D 2,632 neurons that were endogenously labeled by TPH2-tdTomato” - clearly mentioning it is human-annotated.

(3) Napari plugin

The plugin is well-documented and works by following the installation instructions.

Great, thanks for the positive feedback.

However, I was not able to recreate the segmentations reported in the paper with the default settings for the pre-trained WNet3D: segments are generally too large and there are a lot of false positives. Both the prediction and the final instance segmentation also show substantial border artifacts, possibly due to a block-wise processing scheme.

Your review here does not match your comments above; above you said it was working well, such that you doubt the GT is real and the data is too easy as it was perfectly easy to threshold with non-learning methods.

You would need to share more details on what you tried. We suggest following our code; namely, we provide the full experimental code and processing for every figure, as was noted in our original submission: https://github.com/C-Achard/cellseg3d-figures.

Reviewer #2 (Public Review):

Summary:

The authors propose a new method for self-supervised learning of 3d semantic segmentation for fluorescence microscopy. It is based on a WNet architecture (Encoder / Decoder using a UNet for each of these components) that reconstructs the image data after binarization in the bottleneck with a soft n-cuts clustering. They annotate a new dataset for nucleus segmentation in mesoSPIM imaging and train their model on this dataset. They create a napari plugin that provides access to this model and provides additional functionality for training of own models (both supervised and self-supervised), data labeling, and instance segmentation via post-processing of the semantic model predictions. This plugin also provides access to models trained on the contributed dataset in a supervised fashion.

Strengths:

(1) The idea behind the self-supervised learning loss is interesting.

(2) The paper addresses an important challenge. Data annotation is very time-consuming for 3d microscopy data, so a self-supervised method that yields similar results to supervised segmentation would provide massive benefits.

Thank you for highlighting the strengths of our work and new contributions.

Weaknesses:

The experiments presented by the authors do not adequately support the claims made in the paper. There are several shortcomings in the design of the experiment, presentation of the results, and reproducibility.

We address your concerns and misunderstandings below.

Major weaknesses:

(1) The main experiments are conducted on the new mesoSPIM dataset, which contains quite small nuclei, much smaller than the pretraining datasets of CellPose and StarDist. I assume that this is one of the main reasons why these well-established methods don't work for this dataset.

StarDist is not pretrained, we trained it from scratch as we did for WNet3D. We retrained Cellpose and reported the results both with their pretrained model and our best-retrained model. This is documented in Figure 1 and Suppl. Figure 1. We also want to push back and say that they both work very well on this data. In fact, our main claim is not that we beat them, it is that we can match them with a self-supervised method.

Limiting method comparison to only this dataset may create a misleading impression that CellSeg3D is superior for all kinds of 3D nucleus segmentation tasks, whereas this might only hold for small nuclei.

The GT dataset we labeled has nuclei that are normal brain-cell sized. Moreover in Figure 2 we show very different samples with both dense and noisy (c-FOS) labeling.

We also clearly do not claim this is superior for all tasks, from our text: “First, we benchmark our methods against Cellpose and StarDist, two leading supervised cell segmentation packages with user-friendly workflows, and show our methods match or outperform them in 3D instance segmentation on mesoSPIM-acquired volumes" – we explicitly do NOT claim beyond the scope of the benchmark. Moreover we state: "We found that WNet3D could be as good or better than the fully supervised models, especially in the low data regime, on this dataset at semantic and instance segmentation" – again noting on this dataset. Again, we only claimed we can be as good as these methods with an unsupervised approach, and in the low-GT data regime we can excel.

Further, additional preprocessing of the mesoSPIM images may improve results for StarDist and CellPose (see the first point in minor weaknesses). Note: having a method that works better for small nuclei would be an important contribution. But I doubt that the claims hold for larger and or more crowded nuclei as the current version of the paper implies.

Figure 2 benchmarks our method on larger and denser nuclei, but we do not intend to claim this is a universal tool. It was specifically designed for light-sheet (brain) data, and we have adjusted the title to be more clear. But we also show in Figure 2 it works well on more dense and noisy samples, hinting that it could be a promising approach. But we agree, as-is, it’s unlikely to be good for extremely dense samples like in electron microscopy, which we never claim it would be.

With regards to preprocessing, we respectfully disagree. We trained StarDist (and asked the main developer of StarDist, Martin Weigert, to check our work and he is acknowledged in the paper) and it does very well. Cellpose we also retrained and optimized and we show it works as-well-as leading transformer and CNN-based approaches. Again, we only claimed we can be as good as these methods with an unsupervised approach.

The contribution of the paper would be much stronger if a **fair** comparison with StarDist / CellPose was also done on the additional datasets from Figure 2.

We appreciate that more datasets would be ideal, but we always feel it’s best for the authors of tools to benchmark their own tools on data. We only compared others in Figure 1 to the new dataset we provide so people get a sense of the quality of the data too; there we did extensive searches for best parameters for those tools. So while we think it would be nice, we will leave it to those authors to be most fair. We also narrowed the scope of our claims to mesoSPIM data (added light-sheet to the title), which none of the other examples in Figure 2 are.

(2) The experimental setup for the additional datasets seems to be unrealistic. In general, the description of these experiments is quite short and so the exact strategy is unclear from the text. However, you write the following: "The channel containing the foreground was then thresholded and the Voronoi-Otsu algorithm used to generate instance labels (for Platynereis data), with hyperparameters based on the Dice metric with the ground truth." I.e., the hyperparameters for the post-processing are found based on the ground truth. From the description it is unclear whether this is done a) on the part of the data that is then also used to compute metrics or b) on a separate validation split that is not used to compute metrics. If a) this is not a valid experimental setup and amounts to training on your test set. If b) this is ok from an experimental point of view, but likely still significantly overestimates the quality of predictions that can be achieved by manual tuning of these hyperparameters by a user that is not themselves a developer of this plugin or an absolute expert in classical image analysis, see also 3.

We apologize for this confusion; we have now expanded the methods to clarify the setup is now b; you can see what we exactly did as well in the figure notebook: https://c-achard.github.io/cellseg3d-figures/fig2-b-c-extra-datasets/self-supervised-ext ra.html#threshold-predictions.

For clarity, we additionally link each individual notebook now in the Methods.

(3) I cannot reproduce any of the results using the plugin. I tried to reproduce some of the results from the paper qualitatively: First I downloaded one of the volumes from the mesoSPIM dataset (c5image) and applied the WNet3D to it. The prediction looks ok, however the value range is quite close (Average BG intensity ~0.4, FG intensity 0.6-0.7). I try to apply the instance segmentation using "Convert to instance labels" from "Utilities". Using "Voronoi-Otsu" does not work due to an error in pyClesperanto ("clGetPlatformIDs failed: PLATFORM_NOT_FOUND_KHR"). Segmentation via "Connected Components" and "Watershed" requires extensive manual tuning to get a somewhat decent result, which is still far from perfect.

We are sorry to hear of the installation issue; pyClesperanto is a dependency that would be required to reproduce the images (sounds like you had this issue; https://forum.image.sc/t/pyclesperanto-prototype-doesnt-work/45724 ) We added to our docs now explicitly the fix:https://github.com/AdaptiveMotorControlLab/CellSeg3D/pull/90. We recommend checking the reproduction notebooks (which were linked in initial submission): https://c-achard.github.io/cellseg3d-figures/intro.html.

Then I tried to reproduce the results for the Mouse Skull Nuclei Dataset from EmbedSeg. The results look like a denoised version of the input image, not a semantic segmentation. I was skeptical from the beginning that the method would transfer without retraining, due to the very different morphology of nuclei (much larger and elongated). None of the available segmentation methods yield a good result, the best I can achieve is a strong over-segmentation with watersheds.

We are surprised to hear this; did you follow the following notebook which directly produces the steps to create this figure? (This was linked in preprint): https://c-achard.github.io/cellseg3d-figures/fig2-c-extra-datasets/self-supervised-extra .html

We also expanded the methods to include the exact values from the notebook into the text.

Minor weaknesses:

(1) CellPose can work better if images are resized so that the median object size in new images matches the training data. For CellPose the cyto2 model should do this automatically. It would be important to report if this was done, and if not would be advisable to check if this can improve results.

We reported this value in Figure 1 and found it to work poorly, that is why we retrained Cellpose and found good performance results (also reported in Figure 1). Resizing GB to TB volumes for mesoSPIM data is otherwise not practical, so simply retraining seems the preferable option, which is what we did.

(2) It is a bit confusing that F1-Score and Dice Score are used interchangeably to evaluate results. The dice score only evaluates semantic predictions, whereas F1-Score evaluates the actual instance segmentation results. I would advise to only use F1-Score, which is the more appropriate metric. For Figure 1f either the mean F1 score over thresholds or F1 @ 0.5 could be reported. Furthermore, I would advise adopting the recommendations on metric reporting from https://www.nature.com/articles/s41592-023-01942-8.

We are using the common metrics in the field for instance and semantic segmentation, and report them in the methods. In Figure 2f we actually report the “Dice” as defined in StarDist (as we stated in the Methods). Note, their implementation is functionally equivalent to F1-Score of an IoU >= 0, so we simply changed this label in the figure now for clarity. We agree this clarifies for the expert readers what was done, and we expanded the methods to be more clear about metrics.

We added a link to the paper you mention as well.

(3) A more conceptual limitation is that the (self-supervised) method is limited to intensity-based segmentation, and so will not be able to work for cases where structures cannot be distinguished based on intensity only. It is further unclear how well it can separate crowded nuclei. While some object separation can be achieved by morphological operations this is generally limited for crowded segmentation tasks and the main motivation behind the segmentation objective used in StarDist, CellPose, and other instance segmentation methods. This limitation is only superficially acknowledged in "Note that WNet3D uses brightness to detect objects [...]" but should be discussed in more depth. Note: this limitation does not mean at all that the underlying contribution is not significant, but I think it is important to address this in more detail so that potential users know where the method is applicable and where it isn't.

We agree, and we added a new section specifically on limitations. Thanks for raising this good point. Thus, while self-supervision comes at the saving of hundreds of manual labor, it comes at the cost of more limited regimes it can work on. Hence why we don’t claim this should replace excellent methods like Cellpose or Stardist, but rather complement them and can be used on mesoSPIM samples, as we show here.

Recommendations for the authors:

Reviewer #1 (Recommendations For The Authors):

(1) One of the listed contributions is "adding the SoftNCuts loss". This is not true, reference 10 already introduced that loss.

“Our changes include a conversion to a fully 3D architecture and adding the SoftNCuts loss” - we dropped the common and added the word “AND” to note that we added the 3D version of the SoftNCuts loss TO the 3D architecture, which 10 did not do.

(2) "Typically, these methods use a multi-step approach" to segment 3D from 2D: this is only true for CellPose, StarDist does real 3D.

That is why we preface with “typically” which implies not always.

(3) "see Methods, Figure 1c, c)" is missing an opening in parentheses.

(4) K is not introduced in equation (1) (presumably the number of classes, which seems to be 2 for all experiments considered).

k actually was introduced just below equation 1 as the number of classes. We added the note that k was set to 2.

(5) X is not introduced in equation (2) (presumably the spatial position of a voxel).

Sorry for this oversight. We add that $X$ is the spatial position of the voxel.

Reviewer #2 (Recommendations For The Authors):

To improve the paper the weaknesses mentioned above should be addressed:

(1) Compare to StarDist and/or CellPose on further datasets, esp. using pre-trained CellPose, to see if the claims of competitive performance with state-of-the-art approaches hold up for the case of different nucleus morphologies. The EmbedSeg datasets from Figure 2 c are well suited for this. In the current form, the claims are too broad and not supported if thorough experiments are performed on a single dataset with a very specific morphology. Note: even if the method is not fully competitive with CellPose / StarDist on these Datasets it holds merit since a segmentation method that works for small nuclei as in the mesoSPIM dataset and works self-supervised is very valuable.

(2) Clarify how the best instance segmentation hyperparameters are found. If you indeed optimize these on the same part of the dataset used for evaluating metrics then the current experimental set-up is invalid. If this is not the case I would still rethink if this is a good way to report the results since it does not seem to reflect user experience. I found it not possible to find good hyperparameters for either of the two segmentation approaches I tried (see also next point) so I think these numbers are too optimistic.

(3) Improve the instance segmentation part of the plugin: either provide troubleshooting for how to install pyClesperanto correctly to use the voronoi-based instance segmentation or implement it based on more standard functionality like skimage / scipy. Provide more guidance for finding good hyperparameters for the segmentation task.

(4) Make sure image resizing is done correctly when using pre-trained CellPose models and report on this.

(5) Report F1 Scores only (unless there is a compelling reason to also report Dice).

(6) Address the limitations of the method in more detail.

On a positive note: all data and code are available and easy to download/install. A minor comment: it would be very helpful to have line numbers for reviewing a revised version.

All comments are also addressed in the public reviews.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation