MicroRNA-mediated repression of nonsense mRNAs

  1. Ya Zhao
  2. Jimin Lin
  3. Beiying Xu
  4. Sida Hu
  5. Xue Zhang
  6. Ligang Wu  Is a corresponding author
  1. Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China

Abstract

Numerous studies have established important roles for microRNAs (miRNAs) in regulating gene expression. Here, we report that miRNAs also serve as a surveillance system to repress the expression of nonsense mRNAs that may produce harmful truncated proteins. Upon recognition of the premature termination codon by the translating ribosome, the downstream portion of the coding region of an mRNA is redefined as part of the 3' untranslated region; as a result, the miRNA-responsive elements embedded in this region can be detected by miRNAs, triggering accelerated mRNA deadenylation and translational inhibition. We demonstrate that naturally occurring cancer-causing APC (adenomatous polyposis coli) nonsense mutants which escape nonsense-mediated mRNA decay (NMD) are repressed by miRNA-mediated surveillance. In addition, we show that miRNA-mediated surveillance and exon-exon junction complex-mediated NMD are not mutually exclusive and act additively to enhance the repressive activity. Therefore, we have uncovered a new role for miRNAs in repressing nonsense mutant mRNAs.

Article and author information

Author details

  1. Ya Zhao

    Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jimin Lin

    Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Beiying Xu

    Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Sida Hu

    Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xue Zhang

    Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ligang Wu

    Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    lgwu@sibcb.ac.cn
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Nick J Proudfoot, University of Oxford, United Kingdom

Version history

  1. Received: April 15, 2014
  2. Accepted: August 7, 2014
  3. Accepted Manuscript published: August 8, 2014 (version 1)
  4. Version of Record published: September 9, 2014 (version 2)

Copyright

© 2014, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,537
    views
  • 386
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ya Zhao
  2. Jimin Lin
  3. Beiying Xu
  4. Sida Hu
  5. Xue Zhang
  6. Ligang Wu
(2014)
MicroRNA-mediated repression of nonsense mRNAs
eLife 3:e03032.
https://doi.org/10.7554/eLife.03032

Share this article

https://doi.org/10.7554/eLife.03032

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.