Abstract

Within a single generation time a growing yeast cell imports ~14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers - termed here escortins - to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles.

Article and author information

Author details

  1. Sabina Schütz

    ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Ute Fischer

    ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin Altvater

    ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Purnima Nerkurkar

    ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Cohue Peña

    ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Michaela Gerber

    ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Yiming Chang

    ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefanie Caesar

    Universität des Saarlandes, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Olga Tatjana Schubert

    ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Gabriel Schlenstedt

    Universität des Saarlandes, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Vikram G Panse

    ETH Zürich, Zürich, Switzerland
    For correspondence
    vikram.panse@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ramanujan S Hegde, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: May 24, 2014
  2. Accepted: August 20, 2014
  3. Accepted Manuscript published: August 21, 2014 (version 1)
  4. Accepted Manuscript updated: August 27, 2014 (version 2)
  5. Version of Record published: September 12, 2014 (version 3)

Copyright

© 2014, Schütz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,060
    Page views
  • 348
    Downloads
  • 56
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sabina Schütz
  2. Ute Fischer
  3. Martin Altvater
  4. Purnima Nerkurkar
  5. Cohue Peña
  6. Michaela Gerber
  7. Yiming Chang
  8. Stefanie Caesar
  9. Olga Tatjana Schubert
  10. Gabriel Schlenstedt
  11. Vikram G Panse
(2014)
A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly
eLife 3:e03473.
https://doi.org/10.7554/eLife.03473

Share this article

https://doi.org/10.7554/eLife.03473

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.