Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses

  1. Shiho Chiba
  2. Hiroaki Ikushima
  3. Hiroshi Ueki
  4. Hideyuki Yanai
  5. Yoshitaka Kimura
  6. Sho Hangai
  7. Junko Nishio
  8. Hideo Negishi
  9. Tomohiko Tamura
  10. Shinobu Saijo
  11. Yoichiro Iwakura
  12. Tadatsugu Taniguchi  Is a corresponding author
  1. Institute of Industrial Science, The University of Tokyo, Japan
  2. Yokohama City University Graduate School of Medicine, Japan
  3. Medical Mycology Research Center, Chiba University, Japan
  4. Research Institute for Biomedical Sciences, Tokyo University of Science, Japan

Abstract

The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications.

Article and author information

Author details

  1. Shiho Chiba

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  2. Hiroaki Ikushima

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  3. Hiroshi Ueki

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  4. Hideyuki Yanai

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  5. Yoshitaka Kimura

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  6. Sho Hangai

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  7. Junko Nishio

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Hideo Negishi

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  9. Tomohiko Tamura

    Yokohama City University Graduate School of Medicine, Yokohama, Japan
    Competing interests
    No competing interests declared.
  10. Shinobu Saijo

    Medical Mycology Research Center, Chiba University, Chiba, Japan
    Competing interests
    No competing interests declared.
  11. Yoichiro Iwakura

    Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
    Competing interests
    No competing interests declared.
  12. Tadatsugu Taniguchi

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    For correspondence
    tada@m.u-tokyo.ac.jp
    Competing interests
    Tadatsugu Taniguchi, Senior editor, eLife.

Ethics

Animal experimentation: All animal care and experiments conformed to the guidelines for animal experiments of the University of Tokyo, and were approved by the animal research committee of the University of Tokyo (Reference number: P10-122 and P10-123).

Copyright

© 2014, Chiba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,350
    views
  • 1,032
    downloads
  • 154
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shiho Chiba
  2. Hiroaki Ikushima
  3. Hiroshi Ueki
  4. Hideyuki Yanai
  5. Yoshitaka Kimura
  6. Sho Hangai
  7. Junko Nishio
  8. Hideo Negishi
  9. Tomohiko Tamura
  10. Shinobu Saijo
  11. Yoichiro Iwakura
  12. Tadatsugu Taniguchi
(2014)
Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses
eLife 3:e04177.
https://doi.org/10.7554/eLife.04177

Share this article

https://doi.org/10.7554/eLife.04177

Further reading

    1. Immunology and Inflammation
    Javier Ruiz-Navarro, Sara Fernández-Hermira ... Manuel Izquierdo Pastor
    Research Article

    We analyzed here how formin-like 1 β (FMNL1β), an actin cytoskeleton-regulatory protein, regulates microtubule-organizing center (MTOC) and multivesicular bodies (MVB) polarization and exosome secretion at an immune synapse (IS) model in a phosphorylation-dependent manner. IS formation was associated with transient recruitment of FMNL1β to the IS, which was independent of protein kinase C δ (PKCδ). Simultaneous RNA interference of all FMNL1 isoforms prevented MTOC/MVB polarization and exosome secretion, which were restored by FMNL1βWT expression. However, expression of the non-phosphorylatable mutant FMNL1βS1086A did not restore neither MTOC/MVB polarization nor exosome secretion to control levels, supporting the crucial role of S1086 phosphorylation in MTOC/MVB polarization and exosome secretion. In contrast, the phosphomimetic mutant, FMNL1βS1086D, restored MTOC/MVB polarization and exosome secretion. Conversely, FMNL1βS1086D mutant did not recover the deficient MTOC/MVB polarization occurring in PKCδ-interfered clones, indicating that S1086 FMNL1β phosphorylation alone is not sufficient for MTOC/MVB polarization and exosome secretion. FMNL1 interference inhibited the depletion of F-actin at the central region of the immune synapse (cIS), which is necessary for MTOC/MVB polarization. FMNL1βWT and FMNL1βS1086D, but not FMNL1βS1086A expression, restored F-actin depletion at the cIS. Thus, actin cytoskeleton reorganization at the IS underlies the effects of all these FMNL1β variants on polarized secretory traffic. FMNL1 was found in the IS made by primary T lymphocytes, both in T cell receptor (TCR) and chimeric antigen receptor (CAR)-evoked synapses. Taken together, these results point out a crucial role of S1086 phosphorylation in FMNL1β activation, leading to cortical actin reorganization and subsequent control of MTOC/MVB polarization and exosome secretion.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Bin Li, Jin Zhang ... Chao Wu
    Research Article

    Adjuvants can affect APCs function and boost adaptive immune responses post-vaccination. However, whether they modulate the specificity of immune responses, particularly immunodominant epitope responses, and the mechanisms of regulating antigen processing and presentation remain poorly defined. Here, using overlapping synthetic peptides, we screened the dominant epitopes of Th1 responses in mice post-vaccination with different adjuvants and found that the adjuvants altered the antigen-specific CD4+ T-cell immunodominant epitope hierarchy. MHC-II immunopeptidomes demonstrated that the peptide repertoires presented by APCs were significantly altered by the adjuvants. Unexpectedly, no novel peptide presentation was detected after adjuvant treatment, whereas peptides with high binding stability for MHC-II presented in the control group were missing after adjuvant stimulation, particularly in the MPLA- and CpG-stimulated groups. The low-stability peptide present in the adjuvant groups effectively elicited robust T-cell responses and formed immune memory. Collectively, our results suggest that adjuvants (MPLA and CpG) inhibit high-stability peptide presentation instead of revealing cryptic epitopes, which may alter the specificity of CD4+ T-cell-dominant epitope responses. The capacity of adjuvants to modify peptide–MHC (pMHC) stability and antigen-specific T-cell immunodominant epitope responses has fundamental implications for the selection of suitable adjuvants in the vaccine design process and epitope vaccine development.