1. Immunology and Inflammation
Download icon

Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses

  1. Shiho Chiba
  2. Hiroaki Ikushima
  3. Hiroshi Ueki
  4. Hideyuki Yanai
  5. Yoshitaka Kimura
  6. Sho Hangai
  7. Junko Nishio
  8. Hideo Negishi
  9. Tomohiko Tamura
  10. Shinobu Saijo
  11. Yoichiro Iwakura
  12. Tadatsugu Taniguchi  Is a corresponding author
  1. Institute of Industrial Science, The University of Tokyo, Japan
  2. Yokohama City University Graduate School of Medicine, Japan
  3. Medical Mycology Research Center, Chiba University, Japan
  4. Research Institute for Biomedical Sciences, Tokyo University of Science, Japan
Research Article
  • Cited 83
  • Views 6,064
  • Annotations
Cite this article as: eLife 2014;3:e04177 doi: 10.7554/eLife.04177

Abstract

The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications.

Article and author information

Author details

  1. Shiho Chiba

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  2. Hiroaki Ikushima

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  3. Hiroshi Ueki

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  4. Hideyuki Yanai

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  5. Yoshitaka Kimura

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  6. Sho Hangai

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  7. Junko Nishio

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Hideo Negishi

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  9. Tomohiko Tamura

    Yokohama City University Graduate School of Medicine, Yokohama, Japan
    Competing interests
    No competing interests declared.
  10. Shinobu Saijo

    Medical Mycology Research Center, Chiba University, Chiba, Japan
    Competing interests
    No competing interests declared.
  11. Yoichiro Iwakura

    Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
    Competing interests
    No competing interests declared.
  12. Tadatsugu Taniguchi

    Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
    For correspondence
    tada@m.u-tokyo.ac.jp
    Competing interests
    Tadatsugu Taniguchi, Senior editor, eLife.

Ethics

Animal experimentation: All animal care and experiments conformed to the guidelines for animal experiments of the University of Tokyo, and were approved by the animal research committee of the University of Tokyo (Reference number: P10-122 and P10-123).

Reviewing Editor

  1. Ruslan Medzhitov, Yale University School of Medicine, United States

Publication history

  1. Received: July 28, 2014
  2. Accepted: August 21, 2014
  3. Accepted Manuscript published: August 22, 2014 (version 1)
  4. Version of Record published: September 24, 2014 (version 2)

Copyright

© 2014, Chiba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,064
    Page views
  • 880
    Downloads
  • 83
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Kathryn Milne et al.
    Research Article

    Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yasmine Issah et al.
    Research Article

    Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.