Abstract

Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production.

Article and author information

Author details

  1. Xin Li

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Xin Li, A patent application related to some of the work presented here has been filed on behalf of the Regents of the University of California..
  2. Vivian Yaci Yu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Yuping Lin

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Kulika Chomvong

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Raíssa Estrela

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Annsea Park

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Julie M Liang

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Elizabeth A Znameroski

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Joanna Feehan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. Soo Rin Kim

    Institute for Genomic Biology, University of Illinois, Urbana, United States
    Competing interests
    No competing interests declared.
  11. Yong-Su Jin

    Institute for Genomic Biology, University of Illinois, Urbana, United States
    Competing interests
    No competing interests declared.
  12. N Louise Glass

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  13. Jamie H D Cate

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jcate@lbl.gov
    Competing interests
    Jamie H D Cate, A patent application related to some of the work presented here has been filed on behalf of the Regents of the University of California..

Copyright

© 2015, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,654
    views
  • 736
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Li
  2. Vivian Yaci Yu
  3. Yuping Lin
  4. Kulika Chomvong
  5. Raíssa Estrela
  6. Annsea Park
  7. Julie M Liang
  8. Elizabeth A Znameroski
  9. Joanna Feehan
  10. Soo Rin Kim
  11. Yong-Su Jin
  12. N Louise Glass
  13. Jamie H D Cate
(2015)
Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels
eLife 4:e05896.
https://doi.org/10.7554/eLife.05896

Share this article

https://doi.org/10.7554/eLife.05896

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Ju Kang, Shijie Zhang ... Xin Wang
    Research Article

    Explaining biodiversity is a fundamental issue in ecology. A long-standing puzzle lies in the paradox of the plankton: many species of plankton feeding on a limited variety of resources coexist, apparently flouting the competitive exclusion principle (CEP), which holds that the number of predator (consumer) species cannot exceed that of the resources at a steady state. Here, we present a mechanistic model and demonstrate that intraspecific interference among the consumers enables a plethora of consumer species to coexist at constant population densities with only one or a handful of resource species. This facilitated biodiversity is resistant to stochasticity, either with the stochastic simulation algorithm or individual-based modeling. Our model naturally explains the classical experiments that invalidate the CEP, quantitatively illustrates the universal S-shaped pattern of the rank-abundance curves across a wide range of ecological communities, and can be broadly used to resolve the mystery of biodiversity in many natural ecosystems.

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Miguel Martinez-Ara, Federico Comoglio, Bas van Steensel
    Research Article

    Genes are often regulated by multiple enhancers. It is poorly understood how the individual enhancer activities are combined to control promoter activity. Anecdotal evidence has shown that enhancers can combine sub-additively, additively, synergistically, or redundantly. However, it is not clear which of these modes are more frequent in mammalian genomes. Here, we systematically tested how pairs of enhancers activate promoters using a three-way combinatorial reporter assay in mouse embryonic stem cells. By assaying about 69,000 enhancer-enhancer-promoter combinations we found that enhancer pairs generally combine near-additively. This behaviour was conserved across seven developmental promoters tested. Surprisingly, these promoters scale the enhancer signals in a non-linear manner that depends on promoter strength. A housekeeping promoter showed an overall different response to enhancer pairs, and a smaller dynamic range. Thus, our data indicate that enhancers mostly act additively, but promoters transform their collective effect non-linearly.