Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate

  1. Qi Wang
  2. Erik M Vogan
  3. Laura M Nocka
  4. Connor E Rosen
  5. Julie A Zorn
  6. Stephen C Harrison
  7. John Kuriyan  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Berkeley, United States
  2. Beryllium Inc, United States
  3. University of California, Berkeley, United States
  4. Harvard Medical School, Howard Hughes Medical Institute, United States

Abstract

Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk.

Article and author information

Author details

  1. Qi Wang

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Erik M Vogan

    Beryllium Inc, Boston, United States
    Competing interests
    No competing interests declared.
  3. Laura M Nocka

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Connor E Rosen

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Julie A Zorn

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Stephen C Harrison

    Laboratory of Molecular Medicine, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
    Competing interests
    Stephen C Harrison, Reviewing editor, eLife.
  7. John Kuriyan

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, Senior editor, eLife.

Reviewing Editor

  1. Philip A Cole, Johns Hopkins University School of Medicine, USA

Version history

  1. Received: December 13, 2014
  2. Accepted: February 19, 2015
  3. Accepted Manuscript published: February 20, 2015 (version 1)
  4. Version of Record published: April 2, 2015 (version 2)

Copyright

© 2015, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,486
    views
  • 1,485
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qi Wang
  2. Erik M Vogan
  3. Laura M Nocka
  4. Connor E Rosen
  5. Julie A Zorn
  6. Stephen C Harrison
  7. John Kuriyan
(2015)
Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate
eLife 4:e06074.
https://doi.org/10.7554/eLife.06074

Share this article

https://doi.org/10.7554/eLife.06074

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Nam Chu, Philip A Cole
    Insight

    Bruton's tyrosine kinase, an enzyme that is important for B cell function, can be activated in a number of ways.

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Eva Pyrihová, Martin S King ... Edmund RS Kunji
    Research Article

    Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.