The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

  1. David Barneda
  2. Joan Planas-Iglesias
  3. Maria L Gaspar
  4. Dariush Mohammadyani
  5. Sunil Prasannan
  6. Dirk Dormann
  7. Gil-Soo Han
  8. Stephen A Jesch
  9. George M Carman
  10. Valerian Kagan
  11. Malcolm G Parker
  12. Nicholas T Ktistakis
  13. Ann M Dixon
  14. Judith Klein-Seetharaman
  15. Susan Henry
  16. Mark Christian  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Warwick, United Kingdom
  3. Cornell University, United States
  4. University of Pittsburgh, United States
  5. Imperial College London, United States
  6. Rutgers University, United States
  7. Babraham Institute, United Kingdom

Abstract

Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD-LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat.

Article and author information

Author details

  1. David Barneda

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Joan Planas-Iglesias

    Warwick Medical School, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria L Gaspar

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dariush Mohammadyani

    Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sunil Prasannan

    Department of Chemistry, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Dirk Dormann

    Microscopy Facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Gil-Soo Han

    Microscopy Facility, MRC Clinical Sciences Centre, Imperial College London, London, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephen A Jesch

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. George M Carman

    Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Valerian Kagan

    Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Malcolm G Parker

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicholas T Ktistakis

    Signalling Programme, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Ann M Dixon

    Department of Chemistry, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Judith Klein-Seetharaman

    Warwick Medical School, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Susan Henry

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Mark Christian

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    For correspondence
    m.christian@warwick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Barneda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.07485

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.