The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

  1. David Barneda
  2. Joan Planas-Iglesias
  3. Maria L Gaspar
  4. Dariush Mohammadyani
  5. Sunil Prasannan
  6. Dirk Dormann
  7. Gil-Soo Han
  8. Stephen A Jesch
  9. George M Carman
  10. Valerian Kagan
  11. Malcolm G Parker
  12. Nicholas T Ktistakis
  13. Ann M Dixon
  14. Judith Klein-Seetharaman
  15. Susan Henry
  16. Mark Christian  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Warwick, United Kingdom
  3. Cornell University, United States
  4. University of Pittsburgh, United States
  5. Imperial College London, United States
  6. Rutgers University, United States
  7. Babraham Institute, United Kingdom

Abstract

Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD-LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat.

Article and author information

Author details

  1. David Barneda

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Joan Planas-Iglesias

    Warwick Medical School, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria L Gaspar

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dariush Mohammadyani

    Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sunil Prasannan

    Department of Chemistry, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Dirk Dormann

    Microscopy Facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Gil-Soo Han

    Microscopy Facility, MRC Clinical Sciences Centre, Imperial College London, London, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephen A Jesch

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. George M Carman

    Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Valerian Kagan

    Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Malcolm G Parker

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicholas T Ktistakis

    Signalling Programme, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Ann M Dixon

    Department of Chemistry, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Judith Klein-Seetharaman

    Warwick Medical School, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Susan Henry

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Mark Christian

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    For correspondence
    m.christian@warwick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Stephen G Young, University of California, Los Angeles, United States

Version history

  1. Received: March 13, 2015
  2. Accepted: November 25, 2015
  3. Accepted Manuscript published: November 26, 2015 (version 1)
  4. Accepted Manuscript updated: December 10, 2015 (version 2)
  5. Version of Record published: February 3, 2016 (version 3)

Copyright

© 2015, Barneda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,285
    Page views
  • 1,140
    Downloads
  • 86
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Barneda
  2. Joan Planas-Iglesias
  3. Maria L Gaspar
  4. Dariush Mohammadyani
  5. Sunil Prasannan
  6. Dirk Dormann
  7. Gil-Soo Han
  8. Stephen A Jesch
  9. George M Carman
  10. Valerian Kagan
  11. Malcolm G Parker
  12. Nicholas T Ktistakis
  13. Ann M Dixon
  14. Judith Klein-Seetharaman
  15. Susan Henry
  16. Mark Christian
(2015)
The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix
eLife 4:e07485.
https://doi.org/10.7554/eLife.07485

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Nina Gubensäk, Theo Sagmeister ... Tea Pavkov-Keller
    Research Article

    The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies e.g. bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Dasvit Shetty, Linda J Kenney
    Research Article Updated

    The transcriptional regulator SsrB acts as a switch between virulent and biofilm lifestyles of non-typhoidal Salmonella enterica serovar Typhimurium. During infection, phosphorylated SsrB activates genes on Salmonella Pathogenicity Island-2 (SPI-2) essential for survival and replication within the macrophage. Low pH inside the vacuole is a key inducer of expression and SsrB activation. Previous studies demonstrated an increase in SsrB protein levels and DNA-binding affinity at low pH; the molecular basis was unknown (Liew et al., 2019). This study elucidates its underlying mechanism and in vivo significance. Employing single-molecule and transcriptional assays, we report that the SsrB DNA-binding domain alone (SsrBc) is insufficient to induce acid pH-sensitivity. Instead, His12, a conserved residue in the receiver domain confers pH sensitivity to SsrB allosterically. Acid-dependent DNA binding was highly cooperative, suggesting a new configuration of SsrB oligomers at SPI-2-dependent promoters. His12 also plays a role in SsrB phosphorylation; substituting His12 reduced phosphorylation at neutral pH and abolished pH-dependent differences. Failure to flip the switch in SsrB renders Salmonella avirulent and represents a potential means of controlling virulence.