The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

  1. David Barneda
  2. Joan Planas-Iglesias
  3. Maria L Gaspar
  4. Dariush Mohammadyani
  5. Sunil Prasannan
  6. Dirk Dormann
  7. Gil-Soo Han
  8. Stephen A Jesch
  9. George M Carman
  10. Valerian Kagan
  11. Malcolm G Parker
  12. Nicholas T Ktistakis
  13. Ann M Dixon
  14. Judith Klein-Seetharaman
  15. Susan Henry
  16. Mark Christian  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Warwick, United Kingdom
  3. Cornell University, United States
  4. University of Pittsburgh, United States
  5. Imperial College London, United States
  6. Rutgers University, United States
  7. Babraham Institute, United Kingdom

Abstract

Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD-LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat.

Article and author information

Author details

  1. David Barneda

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Joan Planas-Iglesias

    Warwick Medical School, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria L Gaspar

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dariush Mohammadyani

    Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sunil Prasannan

    Warwick Medical School, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Dirk Dormann

    Microscopy Facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Gil-Soo Han

    Microscopy Facility, MRC Clinical Sciences Centre, Imperial College London, London, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephen A Jesch

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. George M Carman

    Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Valerian Kagan

    Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Malcolm G Parker

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicholas T Ktistakis

    Signalling Programme, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Ann M Dixon

    Department of Chemistry, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Judith Klein-Seetharaman

    Warwick Medical School, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Susan Henry

    Department of Molecular Biology and Genetics, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Mark Christian

    Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
    For correspondence
    m.christian@warwick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Barneda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,398
    views
  • 1,204
    downloads
  • 121
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Barneda
  2. Joan Planas-Iglesias
  3. Maria L Gaspar
  4. Dariush Mohammadyani
  5. Sunil Prasannan
  6. Dirk Dormann
  7. Gil-Soo Han
  8. Stephen A Jesch
  9. George M Carman
  10. Valerian Kagan
  11. Malcolm G Parker
  12. Nicholas T Ktistakis
  13. Ann M Dixon
  14. Judith Klein-Seetharaman
  15. Susan Henry
  16. Mark Christian
(2015)
The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix
eLife 4:e07485.
https://doi.org/10.7554/eLife.07485

Share this article

https://doi.org/10.7554/eLife.07485

Further reading

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.