A general strategy to construct small molecule biosensors in eukaryotes

  1. Justin Feng
  2. Benjamin W Jester
  3. Christine E Tinberg
  4. Daniel J Mandell  Is a corresponding author
  5. Mauricio S Antunes
  6. Raj Chari
  7. Kevin J Morey
  8. Xavier Rios
  9. June I Medford
  10. George M Church
  11. Stanley Fields
  12. David Baker
  1. Harvard Medical School, United States
  2. University of Washington, United States
  3. Colorado State University, United States
  4. Howard Hughes Medical Institute, University of Washington, United States

Abstract

Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

Article and author information

Author details

  1. Justin Feng

    Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States
    Competing interests
    Harvard University has filed a provisional patent on this work
  2. Benjamin W Jester

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    Harvard University has filed a provisional patent on this work
  3. Christine E Tinberg

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    Harvard University has filed a provisional patent on this work
  4. Daniel J Mandell

    Department of Genetics, Harvard Medical School, Boston, United States
    For correspondence
    djmandell@gmail.com
    Competing interests
    Harvard University has filed a provisional patent on this work
  5. Mauricio S Antunes

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  6. Raj Chari

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    Harvard University has filed a provisional patent on this work
  7. Kevin J Morey

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  8. Xavier Rios

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. June I Medford

    Department of Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  10. George M Church

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    Harvard University has filed a provisional patent on this work
  11. Stanley Fields

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    Harvard University has filed a provisional patent on this work
  12. David Baker

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    Harvard University has filed a provisional patent on this work

Reviewing Editor

  1. Jeffery W Kelly, Scripps Research Institute, United States

Version history

  1. Received: August 6, 2015
  2. Accepted: December 17, 2015
  3. Accepted Manuscript published: December 29, 2015 (version 1)
  4. Accepted Manuscript updated: December 30, 2015 (version 2)
  5. Version of Record published: January 26, 2016 (version 3)

Copyright

© 2015, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,659
    views
  • 3,180
    downloads
  • 130
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin Feng
  2. Benjamin W Jester
  3. Christine E Tinberg
  4. Daniel J Mandell
  5. Mauricio S Antunes
  6. Raj Chari
  7. Kevin J Morey
  8. Xavier Rios
  9. June I Medford
  10. George M Church
  11. Stanley Fields
  12. David Baker
(2015)
A general strategy to construct small molecule biosensors in eukaryotes
eLife 4:e10606.
https://doi.org/10.7554/eLife.10606

Share this article

https://doi.org/10.7554/eLife.10606

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.