Abstract

Genome sequences diverge more rapidly in mammals than in other animal lineages such as birds or insects. However, the effect of this rapid divergence on transcriptional evolution remains unclear. Recent reports have indicated a faster divergence of transcription factor binding in mammals than in insects, but others found the reverse for mRNA expression. Here, we show that these conflicting interpretations resulted from differing methodologies. We performed an integrated analysis of transcriptional network evolution by examining mRNA expression, transcription factor binding and cis-regulatory motifs across >25 animal species including mammals, birds and insects. Strikingly, we found that transcriptional networks evolve at a common rate across the three animal lineages. Furthermore, differences in rates of genome divergence were greatly reduced when restricting comparisons to chromatin-accessible sequences. The evolution of transcription is thus decoupled from the global rate of genome sequence evolution, suggesting that a small fraction of the genome regulates transcription.

Article and author information

Author details

  1. Anne-Ruxandra Carvunis

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tina Wang

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dylan Skola

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alice Yu

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan Chen

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jason F Kreisberg

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Trey Ideker

    Department of Medicine, University of California, San Diego, La Jolla, United States
    For correspondence
    tideker@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Duncan T Odom, University of Cambridge / Cancer Research UK, United Kingdom

Version history

  1. Received: September 15, 2015
  2. Accepted: December 17, 2015
  3. Accepted Manuscript published: December 18, 2015 (version 1)
  4. Version of Record published: February 11, 2016 (version 2)

Copyright

© 2015, Carvunis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,867
    views
  • 607
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne-Ruxandra Carvunis
  2. Tina Wang
  3. Dylan Skola
  4. Alice Yu
  5. Jonathan Chen
  6. Jason F Kreisberg
  7. Trey Ideker
(2015)
Evidence for a common evolutionary rate in metazoan transcriptional networks
eLife 4:e11615.
https://doi.org/10.7554/eLife.11615

Share this article

https://doi.org/10.7554/eLife.11615

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.