Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation

  1. Sean W Fanning
  2. Christopher G Mayne
  3. Venkatasubramanian Dharmarajan
  4. Kathryn E Carlson
  5. Teresa A Martin
  6. Scott J Novick
  7. Weiyi Toy
  8. Bradley Green
  9. Srinivas Panchamukhi
  10. Benita S Katzenellenbogen
  11. Emad Tajkhorshid
  12. Patrick R Griffin
  13. Yang Shen
  14. Sarat Chandarlapaty
  15. John A Katzenellenbogen
  16. Geoffrey L Griffin  Is a corresponding author
  1. University of Chicago, United States
  2. University of Illinois at Urbana-Champaign, United States
  3. The Scripps Research Institute-Scripps Florida, United States
  4. The Scripps Research Institute, United States
  5. Memorial Sloan Kettering Cancer Center, United States
  6. University of Illinois Urbana-Champaign, United States
  7. Texas A&M University, United States
  8. Memorial Sloan-Kettering Cancer Center, United States

Abstract

Somatic mutations in the estrogen receptor alpha (ERα) gene (ESR1), especially Y537S and D538G, have been linked to acquired resistance to endocrine therapies. Cell based studies demonstrated that these mutants confer ERα constitutive activity and antiestrogen resistance and suggest that ligand-binding domain dysfunction leads to endocrine therapy resistance. Here, we integrate biophysical and structural biology data to reveal how these mutations lead to a constitutively active and antiestrogen resistant ERα. We show that these mutant ERs recruit coactivator in the absence of hormone while their affinities for estrogen agonist (estradiol) and antagonist (4-hydroxytamoxifen) are reduced. Further, they confer antiestrogen resistance by altering the conformational dynamics of the loop connecting Helix 11 and Helix 12 in the ligand-binding domain of ERα, which leads to a stabilized agonist state and an altered antagonist state that resists inhibition.

Article and author information

Author details

  1. Sean W Fanning

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher G Mayne

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Venkatasubramanian Dharmarajan

    Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kathryn E Carlson

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Teresa A Martin

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott J Novick

    Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Weiyi Toy

    Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bradley Green

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Srinivas Panchamukhi

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Benita S Katzenellenbogen

    Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Emad Tajkhorshid

    Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Patrick R Griffin

    Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yang Shen

    Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Sarat Chandarlapaty

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. John A Katzenellenbogen

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Geoffrey L Griffin

    Department of Molecular Therapeutics, University of Chicago, Jupiter, United States
    For correspondence
    ggreene@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Fanning et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,160
    views
  • 1,706
    downloads
  • 226
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sean W Fanning
  2. Christopher G Mayne
  3. Venkatasubramanian Dharmarajan
  4. Kathryn E Carlson
  5. Teresa A Martin
  6. Scott J Novick
  7. Weiyi Toy
  8. Bradley Green
  9. Srinivas Panchamukhi
  10. Benita S Katzenellenbogen
  11. Emad Tajkhorshid
  12. Patrick R Griffin
  13. Yang Shen
  14. Sarat Chandarlapaty
  15. John A Katzenellenbogen
  16. Geoffrey L Griffin
(2016)
Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation
eLife 5:e12792.
https://doi.org/10.7554/eLife.12792

Share this article

https://doi.org/10.7554/eLife.12792

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.