Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation

  1. Sean W Fanning
  2. Christopher G Mayne
  3. Venkatasubramanian Dharmarajan
  4. Kathryn E Carlson
  5. Teresa A Martin
  6. Scott J Novick
  7. Weiyi Toy
  8. Bradley Green
  9. Srinivas Panchamukhi
  10. Benita S Katzenellenbogen
  11. Emad Tajkhorshid
  12. Patrick R Griffin
  13. Yang Shen
  14. Sarat Chandarlapaty
  15. John A Katzenellenbogen
  16. Geoffrey L Greene  Is a corresponding author
  1. University of Chicago, United States
  2. University of Illinois at Urbana-Champaign, United States
  3. The Scripps Research Institute-Scripps Florida, United States
  4. The Scripps Research Institute, United States
  5. Memorial Sloan Kettering Cancer Center, United States
  6. University of Illinois Urbana-Champaign, United States
  7. Texas A&M University, United States
  8. Memorial Sloan-Kettering Cancer Center, United States

Abstract

Somatic mutations in the estrogen receptor alpha (ERα) gene (ESR1), especially Y537S and D538G, have been linked to acquired resistance to endocrine therapies. Cell based studies demonstrated that these mutants confer ERα constitutive activity and antiestrogen resistance and suggest that ligand-binding domain dysfunction leads to endocrine therapy resistance. Here, we integrate biophysical and structural biology data to reveal how these mutations lead to a constitutively active and antiestrogen resistant ERα. We show that these mutant ERs recruit coactivator in the absence of hormone while their affinities for estrogen agonist (estradiol) and antagonist (4-hydroxytamoxifen) are reduced. Further, they confer antiestrogen resistance by altering the conformational dynamics of the loop connecting Helix 11 and Helix 12 in the ligand-binding domain of ERα, which leads to a stabilized agonist state and an altered antagonist state that resists inhibition.

Article and author information

Author details

  1. Sean W Fanning

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher G Mayne

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Venkatasubramanian Dharmarajan

    Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kathryn E Carlson

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Teresa A Martin

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott J Novick

    Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Weiyi Toy

    Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bradley Green

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Srinivas Panchamukhi

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Benita S Katzenellenbogen

    Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Emad Tajkhorshid

    Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Patrick R Griffin

    Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yang Shen

    Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Sarat Chandarlapaty

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. John A Katzenellenbogen

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Geoffrey L Greene

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    For correspondence
    ggreene@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Fanning et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,011
    views
  • 1,692
    downloads
  • 221
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sean W Fanning
  2. Christopher G Mayne
  3. Venkatasubramanian Dharmarajan
  4. Kathryn E Carlson
  5. Teresa A Martin
  6. Scott J Novick
  7. Weiyi Toy
  8. Bradley Green
  9. Srinivas Panchamukhi
  10. Benita S Katzenellenbogen
  11. Emad Tajkhorshid
  12. Patrick R Griffin
  13. Yang Shen
  14. Sarat Chandarlapaty
  15. John A Katzenellenbogen
  16. Geoffrey L Greene
(2016)
Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation
eLife 5:e12792.
https://doi.org/10.7554/eLife.12792

Share this article

https://doi.org/10.7554/eLife.12792

Further reading

    1. Structural Biology and Molecular Biophysics
    Parveen Goyal, KanagaVijayan Dhanabalan ... Subramanian Ramaswamy
    Research Advance

    N -Acetylneuraminic acid (Neu5Ac) is a negatively charged nine-carbon amino sugar that is often the peripheral sugar in human cell-surface glycoconjugates. Some bacteria scavenge, import, and metabolize Neu5Ac or redeploy it on their cell surfaces for immune evasion. The import of Neu5Ac by many bacteria is mediated by tripartite ATP-independent periplasmic (TRAP) transporters. We have previously reported the structures of SiaQM, a membrane-embedded component of the Haemophilus influenzae TRAP transport system, (Currie et al., 2024). However, none of the published structures contain Neu5Ac bound to SiaQM. This information is critical for defining the transport mechanism and for further structure-activity relationship studies. Here, we report the structures of Fusobacterium nucleatum SiaQM with and without Neu5Ac. Both structures are in an inward (cytoplasmic side) facing conformation. The Neu5Ac-bound structure reveals the interactions of Neu5Ac with the transporter and its relationship with the Na+ binding sites. Two of the Na+-binding sites are similar to those described previously. We identify a third metal-binding site that is further away and buried in the elevator domain. Ser300 and Ser345 interact with the C1-carboxylate group of Neu5Ac. Proteoliposome-based transport assays showed that Ser300-Neu5Ac interaction is critical for transport, whereas Ser345 is dispensable. Neu5Ac primarily interacts with residues in the elevator domain of the protein, thereby supporting the elevator with an operator mechanism. The residues interacting with Neu5Ac are conserved, providing fundamental information required to design inhibitors against this class of proteins.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.