1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

A bacteriophage endolysin that eliminates intracellular streptococci

  1. Yang Shen
  2. Marilia Barros
  3. Tarek Vennemann
  4. D Travis Gallagher
  5. Yizhou Yin
  6. Sara B Linden
  7. Ryan D Heselpoth
  8. Dennis J Spencer
  9. David M Donovan
  10. John Moult
  11. Vincent A Fischetti
  12. Frank Heinrich
  13. Mathias Lösche
  14. Daniel C Nelson  Is a corresponding author
  1. University of Maryland, College Park, United States
  2. Carnegie Mellon University, United States
  3. The Rockefeller University, United States
  4. United States Department of Agriculture, United States
Research Article
  • Cited 45
  • Views 3,796
  • Annotations
Cite this article as: eLife 2016;5:e13152 doi: 10.7554/eLife.13152

Abstract

PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS) whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB-PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can translocate epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extra- and intracellular milieu and as a scaffold for engineering other functionalities.

Article and author information

Author details

  1. Yang Shen

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  2. Marilia Barros

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  3. Tarek Vennemann

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  4. D Travis Gallagher

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  5. Yizhou Yin

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  6. Sara B Linden

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  7. Ryan D Heselpoth

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  8. Dennis J Spencer

    Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  9. David M Donovan

    Animal Biosciences and Biotechnology Lab, Agricultural Research Service, United States Department of Agriculture, Beltsville, United States
    Competing interests
    No competing interests declared.
  10. John Moult

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  11. Vincent A Fischetti

    Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, United States
    Competing interests
    Vincent A Fischetti, An inventor of U.S. patents(numbers 6,608,187, 7,582,729, and 7,838,255), which pertain to PlyC.
  12. Frank Heinrich

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  13. Mathias Lösche

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  14. Daniel C Nelson

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    For correspondence
    nelsond@umd.edu
    Competing interests
    Daniel C Nelson, An inventor of U.S. patents(numbers 6,608,187, 7,582,729, and 7,838,255), which pertain to PlyC.

Ethics

Human subjects: For primary epithelial cell cultures, the experimental protocol received Institutional Review Board approvals from both the Rockefeller University (VAF-0621-1207) and the Weill Cornell Medical College (nos. 0803009695 and 0806009857). Individual patient consent for the use of tissue in research applications was obtained prior to the surgical procedure.

Reviewing Editor

  1. Michael S Gilmore, Harvard Medical School, United States

Publication history

  1. Received: November 18, 2015
  2. Accepted: March 14, 2016
  3. Accepted Manuscript published: March 15, 2016 (version 1)
  4. Version of Record published: April 27, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,796
    Page views
  • 848
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Noah M Dietzen et al.
    Research Article Updated

    Polyunsaturated fatty acids (PUFAs) inhibit pentameric ligand-gated ion channels (pLGICs) but the mechanism of inhibition is not well understood. The PUFA, docosahexaenoic acid (DHA), inhibits agonist responses of the pLGIC, ELIC, more effectively than palmitic acid, similar to the effects observed in the GABAA receptor and nicotinic acetylcholine receptor. Using photo-affinity labeling and coarse-grained molecular dynamics simulations, we identified two fatty acid binding sites in the outer transmembrane domain (TMD) of ELIC. Fatty acid binding to the photolabeled sites is selective for DHA over palmitic acid, and specific for an agonist-bound state. Hexadecyl-methanethiosulfonate modification of one of the two fatty acid binding sites in the outer TMD recapitulates the inhibitory effect of PUFAs in ELIC. The results demonstrate that DHA selectively binds to multiple sites in the outer TMD of ELIC, but that state-dependent binding to a single intrasubunit site mediates DHA inhibition of ELIC.

    1. Biochemistry and Chemical Biology
    2. Medicine
    Shan Qi et al.
    Research Article

    Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.