A bacteriophage endolysin that eliminates intracellular streptococci

  1. Yang Shen
  2. Marilia Barros
  3. Tarek Vennemann
  4. D Travis Gallagher
  5. Yizhou Yin
  6. Sara B Linden
  7. Ryan D Heselpoth
  8. Dennis J Spencer
  9. David M Donovan
  10. John Moult
  11. Vincent A Fischetti
  12. Frank Heinrich
  13. Mathias Lösche
  14. Daniel C Nelson  Is a corresponding author
  1. University of Maryland, College Park, United States
  2. Carnegie Mellon University, United States
  3. The Rockefeller University, United States
  4. United States Department of Agriculture, United States

Abstract

PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS) whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB-PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can translocate epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extra- and intracellular milieu and as a scaffold for engineering other functionalities.

Article and author information

Author details

  1. Yang Shen

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  2. Marilia Barros

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  3. Tarek Vennemann

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  4. D Travis Gallagher

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  5. Yizhou Yin

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  6. Sara B Linden

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  7. Ryan D Heselpoth

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  8. Dennis J Spencer

    Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  9. David M Donovan

    Animal Biosciences and Biotechnology Lab, Agricultural Research Service, United States Department of Agriculture, Beltsville, United States
    Competing interests
    No competing interests declared.
  10. John Moult

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    Competing interests
    No competing interests declared.
  11. Vincent A Fischetti

    Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, United States
    Competing interests
    Vincent A Fischetti, An inventor of U.S. patents(numbers 6,608,187, 7,582,729, and 7,838,255), which pertain to PlyC.
  12. Frank Heinrich

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  13. Mathias Lösche

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  14. Daniel C Nelson

    Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, United States
    For correspondence
    nelsond@umd.edu
    Competing interests
    Daniel C Nelson, An inventor of U.S. patents(numbers 6,608,187, 7,582,729, and 7,838,255), which pertain to PlyC.

Reviewing Editor

  1. Michael S Gilmore, Harvard Medical School, United States

Ethics

Human subjects: For primary epithelial cell cultures, the experimental protocol received Institutional Review Board approvals from both the Rockefeller University (VAF-0621-1207) and the Weill Cornell Medical College (nos. 0803009695 and 0806009857). Individual patient consent for the use of tissue in research applications was obtained prior to the surgical procedure.

Version history

  1. Received: November 18, 2015
  2. Accepted: March 14, 2016
  3. Accepted Manuscript published: March 15, 2016 (version 1)
  4. Version of Record published: April 27, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,428
    views
  • 951
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Shen
  2. Marilia Barros
  3. Tarek Vennemann
  4. D Travis Gallagher
  5. Yizhou Yin
  6. Sara B Linden
  7. Ryan D Heselpoth
  8. Dennis J Spencer
  9. David M Donovan
  10. John Moult
  11. Vincent A Fischetti
  12. Frank Heinrich
  13. Mathias Lösche
  14. Daniel C Nelson
(2016)
A bacteriophage endolysin that eliminates intracellular streptococci
eLife 5:e13152.
https://doi.org/10.7554/eLife.13152

Share this article

https://doi.org/10.7554/eLife.13152

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.