1. Physics of Living Systems
  2. Computational and Systems Biology
Download icon

Many-molecule encapsulation by an icosahedral shell

  1. Jason D Perlmutter
  2. Farzaneh Mohajerani
  3. Michael F Hagan  Is a corresponding author
  1. Brandeis University, United States
Research Article
  • Cited 19
  • Views 2,483
  • Annotations
Cite this article as: eLife 2016;5:e14078 doi: 10.7554/eLife.14078

Abstract

We computationally study how an icosahedral shell assembles around hundreds of molecules. Such a process occurs during the formation of the carboxysome, a bacterial microcompartment that assembles around many copies of the enzymes ribulose 1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase to facilitate carbon fixation in cyanobacteria. Our simulations identify two classes of assembly pathways leading to encapsulation of many-molecule cargoes. In one, shell assembly proceeds concomitantly with cargo condensation. In the other, the cargo first forms a dense globule; then, shell proteins assemble around and bud from the condensed cargo complex. Although the model is simplified, the simulations predict intermediates and closure mechanisms not accessible in experiments, and show how assembly can be tuned between these two pathways by modulating protein interactions. In addition to elucidating assembly pathways and critical control parameters for microcompartment assembly, our results may guide the reengineering of viruses as nanoreactors that self-assemble around their reactants.

Article and author information

Author details

  1. Jason D Perlmutter

    Martin Fisher School of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Farzaneh Mohajerani

    Martin Fisher School of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael F Hagan

    Martin Fisher School of Physics, Brandeis University, Waltham, United States
    For correspondence
    hagan@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Publication history

  1. Received: December 27, 2015
  2. Accepted: May 10, 2016
  3. Accepted Manuscript published: May 11, 2016 (version 1)
  4. Version of Record published: June 28, 2016 (version 2)
  5. Version of Record updated: July 12, 2016 (version 3)

Copyright

© 2016, Perlmutter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,483
    Page views
  • 492
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Physics of Living Systems
    Judith Miné-Hattab et al.
    Research Article Updated

    In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.

    1. Physics of Living Systems
    2. Stem Cells and Regenerative Medicine
    Simona Hankeova et al.
    Research Article

    Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.