Abstract

We computationally study how an icosahedral shell assembles around hundreds of molecules. Such a process occurs during the formation of the carboxysome, a bacterial microcompartment that assembles around many copies of the enzymes ribulose 1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase to facilitate carbon fixation in cyanobacteria. Our simulations identify two classes of assembly pathways leading to encapsulation of many-molecule cargoes. In one, shell assembly proceeds concomitantly with cargo condensation. In the other, the cargo first forms a dense globule; then, shell proteins assemble around and bud from the condensed cargo complex. Although the model is simplified, the simulations predict intermediates and closure mechanisms not accessible in experiments, and show how assembly can be tuned between these two pathways by modulating protein interactions. In addition to elucidating assembly pathways and critical control parameters for microcompartment assembly, our results may guide the reengineering of viruses as nanoreactors that self-assemble around their reactants.

Article and author information

Author details

  1. Jason D Perlmutter

    Martin Fisher School of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Farzaneh Mohajerani

    Martin Fisher School of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael F Hagan

    Martin Fisher School of Physics, Brandeis University, Waltham, United States
    For correspondence
    hagan@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Perlmutter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,840
    views
  • 523
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jason D Perlmutter
  2. Farzaneh Mohajerani
  3. Michael F Hagan
(2016)
Many-molecule encapsulation by an icosahedral shell
eLife 5:e14078.
https://doi.org/10.7554/eLife.14078

Share this article

https://doi.org/10.7554/eLife.14078