1. Cancer Biology
  2. Developmental Biology
Download icon

Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

  1. Julia Hatzold
  2. Filippo Beleggia
  3. Hannah Herzig
  4. Janine Altmüller
  5. Peter Nürnberg
  6. Wilhelm Bloch
  7. Bernd Wollnik
  8. Matthias Hammerschmidt  Is a corresponding author
  1. University of Cologne, Germany
  2. German Sport University Cologne, Germany
  3. University Hospital Cologne, Germany
Research Article
  • Cited 6
  • Views 1,895
  • Annotations
Cite this article as: eLife 2016;5:e14277 doi: 10.7554/eLife.14277

Abstract

Molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of one and the same gene as a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a thus far unrecognized contributor to tumor development and establish a novel paradigm of tumor suppression.

Article and author information

Author details

  1. Julia Hatzold

    Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Filippo Beleggia

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Hannah Herzig

    Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Janine Altmüller

    Institute of Human Genetics, University Hospital Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Nürnberg

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Wilhelm Bloch

    Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernd Wollnik

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthias Hammerschmidt

    Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
    For correspondence
    mhammers@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All zebrafish experiments were approved by the national animal care committees (LANUV Nordrhein-Westfalen; 8.87-50.10.31.08.129; 84-02.04.2012.A251; City of Cologne; 576.1.36.6.3.01.10 Be) and the University of Cologne.

Reviewing Editor

  1. Didier Y R Stainier, Max Planck Institute for Heart and Lung Research, Germany

Publication history

  1. Received: January 7, 2016
  2. Accepted: May 28, 2016
  3. Accepted Manuscript published: May 30, 2016 (version 1)
  4. Accepted Manuscript updated: June 1, 2016 (version 2)
  5. Version of Record published: July 15, 2016 (version 3)

Copyright

© 2016, Hatzold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,895
    Page views
  • 475
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Bert van de Kooij et al.
    Research Article
    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Jaigeeth Deveryshetty et al.
    Research Article Updated