Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

  1. Julia Hatzold
  2. Filippo Beleggia
  3. Hannah Herzig
  4. Janine Altmüller
  5. Peter Nürnberg
  6. Wilhelm Bloch
  7. Bernd Wollnik
  8. Matthias Hammerschmidt  Is a corresponding author
  1. University of Cologne, Germany
  2. German Sport University Cologne, Germany
  3. University Hospital Cologne, Germany

Abstract

Molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of one and the same gene as a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a thus far unrecognized contributor to tumor development and establish a novel paradigm of tumor suppression.

Article and author information

Author details

  1. Julia Hatzold

    Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Filippo Beleggia

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Hannah Herzig

    Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Janine Altmüller

    Institute of Human Genetics, University Hospital Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Nürnberg

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Wilhelm Bloch

    Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernd Wollnik

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthias Hammerschmidt

    Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
    For correspondence
    mhammers@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Didier Y R Stainier, Max Planck Institute for Heart and Lung Research, Germany

Ethics

Animal experimentation: All zebrafish experiments were approved by the national animal care committees (LANUV Nordrhein-Westfalen; 8.87-50.10.31.08.129; 84-02.04.2012.A251; City of Cologne; 576.1.36.6.3.01.10 Be) and the University of Cologne.

Version history

  1. Received: January 7, 2016
  2. Accepted: May 28, 2016
  3. Accepted Manuscript published: May 30, 2016 (version 1)
  4. Accepted Manuscript updated: June 1, 2016 (version 2)
  5. Version of Record published: July 15, 2016 (version 3)

Copyright

© 2016, Hatzold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,719
    views
  • 573
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Hatzold
  2. Filippo Beleggia
  3. Hannah Herzig
  4. Janine Altmüller
  5. Peter Nürnberg
  6. Wilhelm Bloch
  7. Bernd Wollnik
  8. Matthias Hammerschmidt
(2016)
Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit
eLife 5:e14277.
https://doi.org/10.7554/eLife.14277

Share this article

https://doi.org/10.7554/eLife.14277

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Nicholas J Mullen, Surendra K Shukla ... Pankaj K Singh
    Research Article

    Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article Updated

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signalling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor 1. Overall, we implicate CYRI-B as a mediator of growth and signalling in pancreatic cancer, providing new insights into pathways controlling metastasis.