Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

  1. Julia Hatzold  Is a corresponding author
  2. Filippo Beleggia
  3. Hannah Herzig
  4. Janine Altmüller
  5. Peter Nürnberg
  6. Wilhelm Bloch
  7. Bernd Wollnik
  8. Matthias Hammerschmidt  Is a corresponding author
  1. University of Cologne, Germany
  2. German Sport University Cologne, Germany
  3. University Hospital Cologne, Germany

Abstract

Molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of one and the same gene as a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a thus far unrecognized contributor to tumor development and establish a novel paradigm of tumor suppression.

Article and author information

Author details

  1. Julia Hatzold

    Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
    For correspondence
    jhatzold@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Filippo Beleggia

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Hannah Herzig

    Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Janine Altmüller

    Institute of Human Genetics, University Hospital Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Nürnberg

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Wilhelm Bloch

    Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernd Wollnik

    Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthias Hammerschmidt

    Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
    For correspondence
    mhammers@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All zebrafish experiments were approved by the national animal care committees (LANUV Nordrhein-Westfalen; 8.87-50.10.31.08.129; 84-02.04.2012.A251; City of Cologne; 576.1.36.6.3.01.10 Be) and the University of Cologne.

Copyright

© 2016, Hatzold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,781
    views
  • 577
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Hatzold
  2. Filippo Beleggia
  3. Hannah Herzig
  4. Janine Altmüller
  5. Peter Nürnberg
  6. Wilhelm Bloch
  7. Bernd Wollnik
  8. Matthias Hammerschmidt
(2016)
Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit
eLife 5:e14277.
https://doi.org/10.7554/eLife.14277

Share this article

https://doi.org/10.7554/eLife.14277

Further reading

    1. Cancer Biology
    2. Cell Biology
    Salam Dabsan, Gali Zur ... Aeid Igbaria
    Research Article

    The endoplasmic reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, and causing ER stress. To solve this, several mechanisms were reported to relieve ER stress by decreasing the ER protein load. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content. The refluxed proteins gain new prosurvival functions in cancer cells, thereby increasing cancer cell fitness. We termed this phenomenon ER to CYtosol Signaling (or ‘ERCYS’). Here, we found that in mammalian cells, ERCYS is regulated by DNAJB12, DNAJB14, and the HSC70 cochaperone SGTA. Mechanistically, DNAJB12 and DNAJB14 bind HSC70 and SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux. DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Mutations in DNAJB12/14 J-domain prevent the inhibitory interaction between AGR2-wt-p53. Thus, targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness.

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.