Development: Neurogenesis reunited
Metamorphosis is a wonderful and curious process in which animals undergo a transformation from one form and lifestyle to another. It is thought that insects that undergo metamorphosis – which include flies, beetles, bees and butterflies – make up the majority of animal species on Earth. However, the first insects to evolve did not undergo this process. Instead, much like modern-day silverfish, these earliest insects had embryos that developed into essentially miniature versions of the adult forms. Metamorphosing insects evolved later and have embryos that develop into simple larvae. These larvae move, feed and grow until they reach a critical size, at which point they form a pupa and undergo metamorphosis. The transformation involves many of the tissues that had developed in the embryo being broken down so that new adult structures – such as legs, wings, eyes, antennae and genitalia – can form.
The metamorphosis of an insect’s body is paralleled by changes to its nervous system. The nerve cells required for the simple larva are born in the embryo from other cells called neuroblasts. This process, which is called neurogenesis, also occurs in a late stage larva when new nerve cells are needed to build the adult’s nervous system.
In the early 1990s, it was elegantly demonstrated that the active neuroblasts in larvae of the fruit fly Drosophila melanogaster are in fact embryonic neuroblasts that have been re-activated (Prokop and Technau, 1991). However many researchers study neurogenesis in either the embryo or the larva, but not both. This means that for decades these two fields of research have remained largely disconnected, as if they concerned two different beasts. However, last year, Gerhard Technau and colleagues at the University of Mainz started to bridge this gap by studying these two phases of neurogenesis in D. melanogaster (Birkholz et al., 2015). Now, in eLife, Haluk Lacin and James Truman of the Janelia Research Campus report how they have built on this work to complete the job (Lacin and Truman, 2016).
The nervous systems of different insect species develop from ‘ground plans’ that are found in each segment of an insect’s body and defined by neuroblasts. Figuring out how these different ground plans are modified is essential if we are to understand how the nervous systems of insects evolved and develop. Metamorphosing insects, such as D. melanogaster, present an interesting riddle. The fruit fly larva is a small, worm-like creature and most of its body segments perform very similar roles. About 32 neuroblasts in the embryo produce the nerve cells needed for the comparatively simple nervous system in the thorax and abdomen of a larva (Bate, 1976; Birkholz et al., 2013). When neurogenesis resumes in a late stage larvae, 23 neuroblasts whir into action in the thorax, but only a few are re-activated in the abdomen (Truman and Bate, 1988). This larval neurogenesis produces about 90% of the nerve cells found in an adult fly, including those that control its legs and wings.
The work at Mainz and Janelia has now revealed which neuroblasts are exclusively active in the embryo, and which become re-activated in thorax and abdomen of the larva. Technau and colleagues used an approach called the “Flybow” technique to track neuroblast cells (plus the cells descended from these neuroblasts) from the embryo to the late-stage larva just before metamorphosis (Birkholz et al., 2015; Hadjieconomou et al., 2011). Lacin and Truman, on the other hand, used new genetic tools that allowed them to follow lineages of specific neuroblasts and their descendants all the way into the pupal and adult stages (Lacin and Truman, 2016; Awasaki et al., 2014).
While both studies largely agreed, there are some discrepancies. For example, Lacin and Truman discovered a new neuroblast in the larva’s thorax. It appears that this neuroblast (which they named NB5-7) most likely arose via a duplication of a neighbouring neuroblast (called NB5-4). What is more, while both of these neuroblasts produce similar nerve cells associated with motor control of the legs in adult flies (Harris et al., 2015), only NB5-4 also gives rise to cells in the embryo. Together these data point to NB5-7 being a recent evolutionary modification of the basic neuroblast ground plan, and producing the additional cells for the adult nervous system that might boost the control of leg movements. Lacin and Truman also demonstrate that the presence of the NB5-4 neuroblasts depended on specific genes that control the development of animal body plans – the so-called HOX genes (see also Bello et al., 2003).
So how should we now look at neurogenesis in metamorphosing insects? It is possible that the evolution of metamorphosis ushered in a separate mode of nervous system development that is specific to the adult stage. Alternatively, the pause in nerve cell birth that is seen at the end of embryonic development may simply be just that: a pause. Drawing on a wealth of data, Lacin and Truman show that, for D. melanogaster, the pause is just a pause. Moreover, it has now become clear that – rather than being two distinct phases – larval neurogenesis appears to simply resume where embryonic production left off. For example, some neuroblasts in the late embryo produce nerve cells ready for the adult’s nervous system, which remain mostly undifferentiated until the larval stages. When the same neuroblasts become active again in the larva, they then produce new nerve cells that are similar to those last made in the embryo. Finally, although some details remain to be ironed out, by casting embryonic and larval neurogenesis in Drosophila as a continuum, Lacin and Truman have opened new avenues for studying the development and evolution of nervous systems.
References
-
Making Drosophila lineage–restricted drivers via patterned recombination in neuroblastsNature Neuroscience 17:631–637.https://doi.org/10.1038/nn.3654
-
Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoriaJournal of Embryology and Experimental Morphology 35:107–123.
-
The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogasterDevelopment 111:79–88.
Article and author information
Author details
Publication history
Copyright
© 2016, Landgraf
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,160
- views
-
- 147
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Neuroscience
Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.
-
- Developmental Biology
- Genetics and Genomics
The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.