The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers

  1. Kouki K Touhara
  2. Weiwei Wang
  3. Roderick MacKinnon  Is a corresponding author
  1. Howard Hughes Medical Institute, Rockefeller University, United States

Abstract

G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na+. In cardiac pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play a central role in parasympathetic slowing of heart rate. It is known that the Na+ binding site of the GIRK1 subunit is defective, but the functional difference between GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers remains unclear. Here, using purified proteins and the lipid bilayer system, we characterize Gβγ and Na+ regulation of GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers. We find in GIRK4 homo-tetramers that Na+ binding increases Gβγ affinity and thereby increases the GIRK4 responsiveness to G protein stimulation. GIRK1/4 hetero-tetramers are not activated by Na+, but rather are in a permanent state of high responsiveness to Gβγ, suggesting that the GIRK1 subunit functions like a GIRK4 subunit with Na+ permanently bound.

Article and author information

Author details

  1. Kouki K Touhara

    Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Weiwei Wang

    Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Roderick MacKinnon

    Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    For correspondence
    mackinn@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Version history

  1. Received: March 3, 2016
  2. Accepted: April 11, 2016
  3. Accepted Manuscript published: April 13, 2016 (version 1)
  4. Version of Record published: May 13, 2016 (version 2)

Copyright

© 2016, Touhara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,460
    views
  • 585
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kouki K Touhara
  2. Weiwei Wang
  3. Roderick MacKinnon
(2016)
The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers
eLife 5:e15750.
https://doi.org/10.7554/eLife.15750

Share this article

https://doi.org/10.7554/eLife.15750

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Christopher Miller
    Insight

    Experiments on artificial membranes are revealing many details about the workings of a family of potassium ion channels called GIRK channels.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.