Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α

  1. Jonathan M Wagner
  2. Marcin D Roganowicz
  3. Katarzyna Skorupka
  4. Steven L Alam
  5. Devin E Christensen
  6. Ginna L Doss
  7. Yueping Wan
  8. Gabriel A Frank
  9. Barbie K Ganser-Pornillos
  10. Wesley I Sundquist
  11. Owen Pornillos  Is a corresponding author
  1. University of Virginia, United States
  2. University of Utah, United States
  3. Ben-Gurion University, Israel

Abstract

Restriction factors and pattern recognition receptors are important components of intrinsic cellular defenses against viral infection. Mammalian TRIM5α proteins are restriction factors and receptors that target the capsid cores of retroviruses and activate ubiquitin-dependent antiviral responses upon capsid recognition. Here, we report crystallographic and functional studies of the TRIM5α B-box 2 domain, which mediates higher-order assembly of TRIM5 proteins. The B-box can form both dimers and trimers, and the trimers can link multiple TRIM5α proteins into a hexagonal net that matches the lattice arrangement of capsid subunits and enables avid capsid binding. Two modes of conformational flexibility allow TRIM5α to accommodate the variable curvature of retroviral capsids. B-box mediated interactions also modulate TRIM5α's E3 ubiquitin ligase activity, by stereochemically restricting how the N-terminal RING domain can dimerize. Overall, these studies define important molecular details of cellular recognition of retroviruses, and how recognition links to downstream processes to disable the virus.

Article and author information

Author details

  1. Jonathan M Wagner

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  2. Marcin D Roganowicz

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  3. Katarzyna Skorupka

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  4. Steven L Alam

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Devin E Christensen

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Ginna L Doss

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  7. Yueping Wan

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
    Competing interests
    No competing interests declared.
  8. Gabriel A Frank

    Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheeva, Israel
    Competing interests
    No competing interests declared.
  9. Barbie K Ganser-Pornillos

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  10. Wesley I Sundquist

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    Wesley I Sundquist, Reviewing editor, eLife.
  11. Owen Pornillos

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    For correspondence
    owp3a@eservices.virginia.edu
    Competing interests
    No competing interests declared.

Copyright

© 2016, Wagner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.16309

Further reading

    1. Structural Biology and Molecular Biophysics
    2. Microbiology and Infectious Disease
    Jeremy Luban
    Insight

    Structural studies reveal how an antiviral factor forms a molecular net to restrict retroviruses including HIV-1.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.