Ion Channels: Keeping a lid on calcium uptake

  1. Vivek Garg  Is a corresponding author
  2. Yuriy Kirichok  Is a corresponding author
  1. University of California, San Francisco, United States

Mitochondria are often referred to as the “powerhouses” of eukaryotic cells because they supply most of the energy that the cells need. In the 1960s it was discovered that active mitochondria, when isolated from the cell and studied “in a test-tube”, accumulate large quantities of calcium ions (Ca2+). However, the importance of this phenomenon was not immediately clear. Later, in the 1990s, it was revealed that mitochondria inside eukaryotic cells also take up Ca2+ ions (Rizzuto et al., 1998).

The uptake of Ca2+ by mitochondria stimulates certain enzymes to regulate energy production in order to match the cell’s activity. However, if too much Ca2+ enters, the mitochondria can malfunction which often kills the cell. The uptake of Ca2+ by mitochondria must therefore be tightly controlled. Now, in eLife, Christopher Miller and colleagues at Brandeis University – including Ming-Feng Tsai and Charles Phillips as joint first authors – report how this control might be achieved (Tsai et al., 2016).

Each mitochondrion has an inner membrane and an outer membrane. Small molecules and ions (including Ca2+ ions) can pass freely through the outer membrane, but not the inner one. The transport of Ca2+ through the inner membrane depends on an ion channel called the “mitochondrial Ca2+ uniporter” (or MCU channel for short). This channel is the most selective Ca2+ channel currently known (Kirichok et al., 2004).

The MCU channel is actually a protein complex made from multiple subunits. The Ca2+ ions pass through a pore-forming subunit (Baughman et al., 2011; De Stefani et al., 2011) that spans the inner membrane and is surrounded by five other subunits. These other subunits regulate the pore-forming subunit, but how they do this and how they are all assembled into the channel complex are still topics of active debate.

The pore-forming subunit plus two of the five regulatory subunits (proteins named EMRE and MICU1) form what can be referred to as the “core functional unit of the MCU” (Perocchi et al., 2010; Sancak et al., 2013). This stripped-down version of the complex acts much like the full channel and can be used to explain how mitochondria take up Ca2+. Tsai, Phillips and colleagues used biochemical assays to determine how these three subunits fit together within the core functional unit. They demonstrated that EMRE interacts with the pore-forming subunit via domains that span the inner membrane. They also found that the subunits could not form a working channel without this interaction. Furthermore, they showed that MICU1 binds to EMRE at the outer surface of the inner mitochondrial membrane (Figure 1).

The core functional unit of the MCU channel complex.

The core functional unit spans the inner membrane of a mitochondrion and consists of three subunits: the pore-forming subunit (green), MICU1 (blue) and EMRE (red). Tsai, Phillips and colleagues show that the pore-forming subunit and EMRE interact within the inner membrane via their transmembrane domains. They also show that a negatively charged domain of EMRE (red circle) anchors MICU1 to the cytosolic face of the inner mitochondrial membrane. The concentration of calcium ions ([Ca2+]) in the cytosol of a resting cell is typically about ~100 nM (left). At this concentration, MICU1 does not bind to Ca2+ ions (gray circles), and MICU1 blocks the pore to prevent the flow of Ca2+ ions. In contrast, when the concentration of Ca2+ in the cytosol is elevated (right), MICU1 binds to two Ca2+ ions and dissociates from the pore. This allows Ca2+ ions to flow into the mitochondria (gray arrows).

Combined with relevant data from other groups (Mallilankaraman et al., 2012; Csordás et al., 2013; Patron et al., 2014), the results of Tsai, Phillips and colleagues provide a glimpse of how the MCU channel complex might work at the molecular level. EMRE anchors MICU1 near the pore-forming subunit, and MICU1 then blocks the pore when the Ca2+concentration in the cytosol is at its resting level. This stops Ca2+ ions from flowing into the mitochondria. However, when the Ca2+ concentration in the cytosol increases, Ca2+ ions bind to MICU1and cause it to dissociate from the pore to allow other Ca2+ ions to pass through (Figure 1). Thus MICU1 serves as a Ca2+-sensitive “lid” on the MCU channel complex, which closes and opens the channel in response to changes in the Ca2+ concentration in the cytosol. Notably, the pore-forming subunit cannot work without EMRE (Sancak et al., 2013). Thus it might be EMRE, and not the pore forming subunit, that controls how many of the MCU channels are active in various tissues.

Now that we know how the MCU core functional unit is assembled, the stage is set to explore how the structure of the MCU channel relates to its function. This will bring us closer to understanding the phenomenon of Ca2+ uptake by mitochondria and how it could be affected via drugs to control energy production in cells and cell death.


Article and author information

Author details

  1. Vivek Garg

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuriy Kirichok

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: June 3, 2016 (version 1)
  2. Version of Record updated: June 7, 2016 (version 2)


© 2016, Garg et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,550
    Page views
  • 275
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vivek Garg
  2. Yuriy Kirichok
Ion Channels: Keeping a lid on calcium uptake
eLife 5:e17293.
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Epidemiology and Global Health
    Takashi Sasaki, Yoshinori Nishimoto ... Yasumichi Arai
    Research Article

    Background: High levels of circulating adiponectin are associated with increased insulin sensitivity, low prevalence of diabetes, and low body mass index (BMI); however, high levels of circulating adiponectin are also associated with increased mortality in the 60-70 age group. In this study, we aimed to clarify factors associated with circulating high-molecular-weight (cHMW) adiponectin levels and their association with mortality in the very old (85-89 years old) and centenarians.

    Methods: The study included 812 (women: 84.4%) for centenarians and 1,498 (women: 51.7%) for the very old. The genomic DNA sequence data were obtained by whole genome sequencing or DNA microarray-imputation methods. LASSO and multivariate regression analyses were used to evaluate cHMW adiponectin characteristics and associated factors. All-cause mortality was analyzed in three quantile groups of cHMW adiponectin levels using Cox regression.

    Results: The cHMW adiponectin levels were increased significantly beyond 100 years of age, were negatively associated with diabetes prevalence, and were associated with SNVs in CDH13 (p = 2.21 × 10-22) and ADIPOQ (p = 5.72 × 10-7). Multivariate regression analysis revealed that genetic variants, BMI, and high-density lipoprotein cholesterol (HDLC) were the main factors associated with cHMW adiponectin levels in the very old, whereas the BMI showed no association in centenarians. The hazard ratios for all-cause mortality in the intermediate and high cHMW adiponectin groups in very old men were significantly higher rather than those for all-cause mortality in the low level cHMW adiponectin group, even after adjustment with BMI. In contrast, the hazard ratios for all-cause mortality were significantly higher for high cHMW adiponectin groups in very old women, but were not significant after adjustment with BMI.

    Conclusions: cHMW adiponectin levels increased with age until centenarians, and the contribution of known major factors associated with cHMW adiponectin levels, including BMI and HDLC, varies with age, suggesting that its physiological significance also varies with age in the oldest old.

    Funding: This study was supported by grants from the Ministry of Health, Welfare, and Labour for the Scientific Research Projects for Longevity; a Grant-in-Aid for Scientific Research (No 21590775, 24590898, 15KT0009, 18H03055, 20K20409, 20K07792, 23H03337) from the Japan Society for the Promotion of Science; Keio University Global Research Institute (KGRI), Kanagawa Institute of Industrial Science and Technology (KISTEC), Japan Science and Technology Agency (JST) Research Complex Program 'Tonomachi Research Complex' Wellbeing Research Campus: Creating new values through technological and social innovation (JP15667051), the Program for an Integrated Database of Clinical and Genomic Information from the Japan Agency for Medical Research and Development (No. 16kk0205009h001, 17jm0210051h0001, 19dk0207045h0001); the medical-welfare-food-agriculture collaborative consortium project from the Japan Ministry of Agriculture, Forestry, and Fisheries; and the Biobank Japan Program from the Ministry of Education, Culture, Sports, and Technology.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Nina Gubensäk, Theo Sagmeister ... Tea Pavkov-Keller
    Research Article

    The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies e.g. bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.