Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions

  1. Benjamin P Bouchet
  2. Rosemarie E Gough
  3. York-Christoph Ammon
  4. Dieudonnée van de Willige
  5. Harm Post
  6. Guillaume Jacquemet
  7. AF Maarten Altelaar
  8. Albert JR Heck
  9. Ben T Goult  Is a corresponding author
  10. Anna Akhmanova  Is a corresponding author
  1. Utrecht University, Netherlands
  2. University of Kent, United Kingdom
  3. University of Turku, Finland
  4. University of Utrecht, Netherlands

Abstract

The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules.

Article and author information

Author details

  1. Benjamin P Bouchet

    Department of Cell Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  2. Rosemarie E Gough

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    No competing interests declared.
  3. York-Christoph Ammon

    Department of Cell Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  4. Dieudonnée van de Willige

    Department of Cell Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  5. Harm Post

    Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  6. Guillaume Jacquemet

    Turku Centre for Biotechnology, University of Turku, Turku, Finland
    Competing interests
    No competing interests declared.
  7. AF Maarten Altelaar

    Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  8. Albert JR Heck

    Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2405-4404
  9. Ben T Goult

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    For correspondence
    B.T.Goult@kent.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3438-2807
  10. Anna Akhmanova

    Department of Cell Biology, Utrecht University, Utrecht, Netherlands
    For correspondence
    a.akhmanova@uu.nl
    Competing interests
    Anna Akhmanova, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9048-8614

Copyright

© 2016, Bouchet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,418
    views
  • 1,501
    downloads
  • 165
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin P Bouchet
  2. Rosemarie E Gough
  3. York-Christoph Ammon
  4. Dieudonnée van de Willige
  5. Harm Post
  6. Guillaume Jacquemet
  7. AF Maarten Altelaar
  8. Albert JR Heck
  9. Ben T Goult
  10. Anna Akhmanova
(2016)
Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions
eLife 5:e18124.
https://doi.org/10.7554/eLife.18124

Share this article

https://doi.org/10.7554/eLife.18124

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.