Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis

Abstract

Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the cis-prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently. We show that HRT1, a cPT from Hevea brasiliensis, exhibits distinct RTase activity in vitro only when it is introduced on detergent-washed Hevea RPs (WRPs) by a cell-free translation-coupled system. Using this system, a heterologous cPT from Lactuca sativa also exhibited RTase activity, indicating proper introduction of cPT on RP is the key to reconstitute active RTase. RP proteomics and interaction network analyses revealed the formation of the protein complex consisting of HRT1, RUBBER ELONGATION FACTOR (REF) and HRT1-REF BRIDGING PROTEIN. The RTase activity enhancement observed for the complex assembled on WRPs indicates the HRT1-containing complex functions as the NR biosynthetic machinery.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Satoshi Yamashita

    Graduate School of Engineering, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Haruhiko Yamaguchi

    Sumitomo Rubber Industries, Ltd, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Toshiyuki Waki

    Graduate School of Engineering, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuichi Aoki

    Graduate School of Information Sciences, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Makie Mizuno

    Graduate School of Engineering, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Fumihiro Yanbe

    Graduate School of Engineering, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Tomoki Ishii

    Graduate School of Engineering, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Ayuta Funaki

    Graduate School of Engineering, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuzuru Tozawa

    Graduate School of Science and Engineering, Saitama University, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Yukino Miyagi-Inoue

    Sumitomo Rubber Industries, Ltd, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Kazuhisa Fushihara

    Sumitomo Rubber Industries, Ltd, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Toru Nakayama

    Graduate School of Engineering, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Seiji Takahashi

    Graduate School of Engineering, Tohoku University, Sendai, Japan
    For correspondence
    takahasi@seika.che.tohoku.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2288-4340

Funding

No external funding was received for this work.

Reviewing Editor

  1. Kazunori Okada, University of Tokyo, Japan

Version history

  1. Received: June 21, 2016
  2. Accepted: October 25, 2016
  3. Accepted Manuscript published: October 28, 2016 (version 1)
  4. Accepted Manuscript updated: November 3, 2016 (version 2)
  5. Version of Record published: November 15, 2016 (version 3)

Copyright

© 2016, Yamashita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,422
    views
  • 1,471
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Satoshi Yamashita
  2. Haruhiko Yamaguchi
  3. Toshiyuki Waki
  4. Yuichi Aoki
  5. Makie Mizuno
  6. Fumihiro Yanbe
  7. Tomoki Ishii
  8. Ayuta Funaki
  9. Yuzuru Tozawa
  10. Yukino Miyagi-Inoue
  11. Kazuhisa Fushihara
  12. Toru Nakayama
  13. Seiji Takahashi
(2016)
Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis
eLife 5:e19022.
https://doi.org/10.7554/eLife.19022

Share this article

https://doi.org/10.7554/eLife.19022

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.