A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids

Abstract

Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al. 2015). Here we show that HLOs required a bioartificial microporous Poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.

Article and author information

Author details

  1. Briana R Dye

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Priya H Dedhia

    Department of Surgery, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alyssa J Miller

    Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Melinda S Nagy

    Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric S White

    Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lonnie D Shea

    Center for Organogenesis, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jason R Spence

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    spencejr@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7869-3992

Funding

National Heart, Lung, and Blood Institute (RO1 HL119215)

  • Jason R Spence

Unviersity of Michigan Cellular and Molecular Biology training grant (T32 GM007315)

  • Alyssa J Miller

University of Michigan Tissue Engineering and Regeneration Training Grant (DE00007057)

  • Alyssa J Miller

University of Michigan Rackham Graduate Fellowship

  • Briana R Dye

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All work using human pluripotent stem cells was approved by the University of Michigan Human Pluiripotent Stem Cell Research Oversight Committee (HPSCRO, application #1054). All human tissue used in this work was falls under NIH Exemption 4. The tissue was not obtained from living individuals, and was de-identified. Since this work falls under NIH Exemption 4, it was given a "not regulated" status by the University of Michigan IRB (protocol # HUM00093465 and HUM00105750). All animal experiments were approved by the University of Michigan Institutional Animal Care and Use Committee (IACUC; protocol # PRO00006609).

Copyright

© 2016, Dye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,278
    views
  • 1,610
    downloads
  • 164
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Briana R Dye
  2. Priya H Dedhia
  3. Alyssa J Miller
  4. Melinda S Nagy
  5. Eric S White
  6. Lonnie D Shea
  7. Jason R Spence
(2016)
A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids
eLife 5:e19732.
https://doi.org/10.7554/eLife.19732

Share this article

https://doi.org/10.7554/eLife.19732

Further reading

    1. Stem Cells and Regenerative Medicine
    Marko Z Nikolić, Emma L Rawlins
    Insight

    Transplanting bioengineered human lung organoids into mice could lead to a humanized model for pre-clinical studies of lung disease.

    1. Stem Cells and Regenerative Medicine
    Sujeethkumar Prithiviraj, Alejandro Garcia Garcia ... Paul E Bourgine
    Research Article

    Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.