1. Developmental Biology
  2. Stem Cells and Regenerative Medicine
Download icon

Transcriptomics: How to build a human

  1. Carla B Mellough
  2. Majlinda Lako  Is a corresponding author
  1. Newcastle University, United Kingdom
Insight
  • Cited 1
  • Views 1,988
  • Annotations
Cite this article as: eLife 2016;5:e19826 doi: 10.7554/eLife.19826

Abstract

The genes that control the development of specific tissues and organs in human embryos have been identified.

Main text

The manual for human development is written in the genetic code of our DNA. Our genes encode the instructions to make specific types of molecules that are needed to either build the human body or to control its day-to-day operations. The first step in producing these molecules involves the gene being copied, or transcribed, into an RNA molecule. For some genes, this RNA molecule is the end product; for other genes, the RNA molecule must then be translated to produce a protein.

Mistakes, or mutations, in a gene often change the RNA or protein produced, and even the smallest of changes can have far-reaching effects. For example, if these mutations affect molecules that are needed when a human embryo is developing in the womb, they can lead to severe abnormalities that are collectively called congenital disorders. A cleft palate is a relatively common example of a congenital disorder, and affects one in every 700 babies born each year (Forrester and Merz, 2004; Parker et al., 2010). Similarly, mutations that result in genes being active at the wrong time, or in the wrong cells in a developing embryo, can also lead to congenital disorders. In addition, exposure to toxic or infectious agents can also be a cause. This is exemplified by the drug thalidomide, which was administered to pregnant women between 1956 and 1962, and has caused severe birth defects in around 10,000 children worldwide (McBride, 1961).

Understanding why organs sometimes form incorrectly is challenging, largely because tissue from developing human embryos is rarely available for study. Instead, research has tended to extrapolate information from multiple sources, including individuals born with specific disorders, animal models and cell-based laboratory models of development and disease (Azamian and Lalani, 2016; Moretti et al., 2013; Kelly, 2016).

Some studies have investigated which genes are expressed in developing human embryos by looking at the RNA molecules produced at a given time. These “transcriptomics” studies, however, have tended to look at the embryo as a whole (Fang et al., 2010), or to focus on specific organs and tissues in more developed embryos (van den Berg et al., 2015; Slieker et al., 2015). Consequently, little was known about the formation and early development of organs – a process called organogenesis – in humans.

Over the past year or so, data on this crucial process has started to emerge. First, in mid-2015, a study described the transcriptional profiles of human embryos from different developmental stages (Roost et al., 2015). Now, in eLife, Neil Hanley and co-workers – from the University of Manchester and the Central Manchester University Hospitals NHS Foundation Trust – report transcriptomics data obtained during human organogenesis (Gerrard et al., 2016). The human embryonic material used in the study was collected according to the Codes of Practice of the UK Human Tissue Authority (HTA, 2016).

Hanley and co-workers – who include Dave Gerrard and Andrew Berry as joint first authors – looked at the RNA molecules found in organs and tissues from fifteen separate sites in human embryos. These sites included the thyroid, liver, stomach, brain, heart and adrenal gland. Gerrard et al. were then able to integrate this data into a sort of atlas that mapped the activity level of developmental genes across the embryo. This in turn allowed them to identify eleven groups of genes that were expressed differently in the different organs and tissues examined. Gerrard et al. refer to these groups of genes as metagenes and the activity levels of genes found in each metagene form a kind of transcriptional barcode for each of the different tissue types of the body.

Many cell-based models of development use stem cells from human embryos, or other cells that have been reprogrammed to be more like stem cells (so-called induced pluripotent stem cells; Takahashi et al., 2007). However, these approaches have their limitations (Hrvatin et al., 2014; Patterson et al., 2012), and it is challenging to ensure that stem cells differentiate into completely mature tissues in vitro. Gerrard et al. confirmed that the transcriptional barcode associated with the embryonic liver (metagene 2) was also seen in liver tissue derived from stem cells grown in the laboratory. This suggests that the transcriptional barcodes could be used to check that lab-grown stem cells have differentiated and matured as intended. Moreover, knowing which genes actively direct the cells in embryos to differentiate in specific ways could help other researchers to coax stem cells to become a wider range of tissues in vitro.

The work of Gerrard et al. adds substantially to what is known about the transcriptional profiles of each of the organs and tissues in a developing human embryo, and about the disorders associated with these tissues. Furthermore, their findings complement what we know about the later stages of embryonic development (Roost et al., 2015), and will allow a greater understanding of the distinct events that occur during human development and disease.

The findings by Hanley, Gerrard, Berry and colleagues have great implications for improving stem cell research. They will also undoubtedly aid research into diseases that develop at later stages of development, which has proved particularly challenging so far. Might we be on the cusp of completing the last pages of the ‘how to build a human’ manual? If so, soon we may finally be able to generate mature tissues more routinely in vitro and unravel the unknown mechanisms of development and disease.

References

  1. Book
    1. Kelly RG
    (2016)
    Cardiac development and animal models of congenital heart defects
    In: S Rickert-Sperling, RG Kelly, DJ Driscoll, editors. Congenital Heart Diseases: The Broken Heart. Vienna: Springer. pp. 3–9.

Article and author information

Author details

  1. Carla B Mellough

    Institute of Genetic Medicine and North-East England Stem Cell Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3685-6516
  2. Majlinda Lako

    Institute of Genetic Medicine and North-East England Stem Cell Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
    For correspondence
    majlinda.lako@ncl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1327-8573

Publication history

  1. Version of Record published: August 24, 2016 (version 1)

Copyright

© 2016, Mellough et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,988
    Page views
  • 280
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Ines Lahmann et al.
    Research Article

    Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.

    1. Developmental Biology
    2. Neuroscience
    Roger Revilla-i-Domingo et al.
    Research Article

    Rhabdomeric opsins (r-opsins) are light-sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic of r-opsin1-expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer, and found nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue-light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells, light - mediated by r-Opsin1 - adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep learning-based quantitative behavioral analysis for animal trunk movements, and identify a light- and r-Opsin-1-dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light-sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.