Endoplasmic Reticulum: Keeping in shape
The endoplasmic reticulum is the largest single structure in eukaryotic cells. It consists of a range of interconnected shapes, including sheets and tubules, and comprises a lumen enclosed by a membrane that is continuous with the membrane that surrounds the nucleus of the cell (Figure 1). The structure and dynamic nature of the endoplasmic reticulum allow it to be involved in many processes in cells: these processes include protein production and degradation, cell signaling, and the synthesis and distribution of lipids and fat molecules. Form follows function, and understanding how the distinct shapes of the endoplasmic reticulum are regulated and maintained is currently an area of intense interest in cell biology (Goyal and Blackstone, 2013; Westrate et al., 2015).
Over the past decade, several proteins that shape the endoplasmic reticulum have been identified. In many cases, these proteins are evolutionarily conserved across eukaryotes, from yeast to mammalian cells. Membrane proteins of the reticulon and REEP families can generate curves in membranes and act to maintain the tubules (Voeltz et al., 2006). Atlastin proteins mediate the tethering and fusion of tubules to one other to form three-way junctions (Hu et al., 2009; Orso et al., 2009), which appear to be stabilized by a membrane protein called lunapark (Shemesh et al., 2014; Chen et al., 2015). Several other proteins help the endoplasmic reticulum to maintain contact with the cell membrane, other cell compartments and the cytoskeleton. Increasingly, studies have revealed dynamic changes in the shape of the endoplasmic reticulum in processes such as cell division and during electrical activity in neurons (Goyal and Blackstone, 2013; Phillips and Voeltz, 2016).
Proteins involved in shaping the endoplasmic reticulum have mostly been studied individually, even though they are known to interact with one another. Now, in eLife, Tom Rapoport and co-workers at Harvard Medical School – including Songyu Wang, Hanna Tukachinsky and Fabian Romano – report on how three key proteins work together to shape and maintain the endoplasmic reticulum (Wang et al., 2016).
Wang et al. performed CRISPR/Cas9 gene knock outs and stable gene transfections in mammalian cells and also investigated egg extracts from the frog Xenopus, which can form an endoplasmic reticulum network in vitro that is strikingly similar to that seen in intact cells. They found that in addition to being required for the formation of three-way junctions, atlastins are also necessary to maintain such junctions. Wang et al. further report on the interplay among the proteins that are involved in shaping the endoplasmic reticulum. For instance, lunapark is not required for three-way junctions to form, but its depletion appears to cause a loss of tubule junctions and an increase in the number of sheet-like structures.
Another remarkable finding is that the endoplasmic reticulum network fragments if atlastin is inhibited (see also Orso et al., 2009), or if the reticulon proteins are overexpressed. This indicates that the network can spontaneously disassemble in some circumstances and may explain why no proteins specifically involved in the splitting of tubules have ever been identified. Although the endoplasmic reticulum is generally thought to be continuous, previous studies have shown that it can split up in certain situations, for example during the fertilization of starfish eggs or during excessive electrical activity in neurons (Goyal and Blackstone, 2013). A future challenge will be to find out how and why cells might fragment their endoplasmic reticulum.
Finally, Wang et al. propose a compelling mechanism for how lunapark is regulated by phosphorylation during cell division. Modifying lunapark to mimic phosphorylated lunapark caused it to disappear from three-way junctions. This result, coupled with a recent study showing that lunapark is a component of a ubiquitin ligase complex at three-way junctions (Zhao et al., 2016), will probably lead to additional studies into how structural modifications regulate these proteins to control the shape of the endoplasmic reticulum.
We have likely just scratched the surface of how the endoplasmic reticulum is shaped, and additional proteins and regulatory mechanisms will surely be uncovered. Investigating the dynamic interactions of the endoplasmic reticulum with other cell compartments and the plasma membrane seems a particularly exciting area. Furthermore, numerous endoplasmic reticulum shaping proteins are mutated in inherited neurological disorders, particularly the hereditary spastic paraplegias (Blackstone, 2012). Future studies will benefit from emerging new super-resolution microscopy tools, improving our understanding of how the endoplasmic reticulum is dynamically shaped in health and disease.
References
-
Cellular pathways of hereditary spastic paraplegiaAnnual Review of Neuroscience 35:25–47.https://doi.org/10.1146/annurev-neuro-062111-150400
-
Untangling the web: mechanisms underlying ER network formationBiochimica Et Biophysica Acta 1833:2492–2498.https://doi.org/10.1016/j.bbamcr.2013.04.009
-
Structure and function of ER membrane contact sites with other organellesNature Reviews Molecular Cell Biology 17:69–82.https://doi.org/10.1038/nrm.2015.8
-
Form follows function: the importance of endoplasmic reticulum shapeAnnual Review of Biochemistry 84:791–811.https://doi.org/10.1146/annurev-biochem-072711-163501
-
Lunapark is a component of a ubiquitin ligase complex localized to the endoplasmic reticulum three-way junctionsJournal of Biological Chemistry 291:18252–18262.https://doi.org/10.1074/jbc.M116.737783
Article and author information
Author details
Publication history
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 17,499
- views
-
- 482
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.
-
- Cell Biology
How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.