Polo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop

Abstract

The synaptonemal complex (SC) is an ultrastructurally conserved proteinaceous structure that holds homologous chromosomes together and is required for the stabilization of pairing interactions and the completion of crossover (CO) formation between homologs during meiosis I. Here, we identify a novel role for a central region component of the SC, SYP-4, in negatively regulating formation of recombination-initiating double-strand breaks (DSBs) via a feedback loop triggered by crossover designation in C. elegans. We found that SYP-4 is phosphorylated dependent on Polo-like kinases PLK-1/2. SYP-4 phosphorylation depends on DSB formation and crossover designation, is required for stabilizing the SC in pachytene by switching the central region of the SC from a more dynamic to a less dynamic state, and negatively regulates DSB formation. We propose a model in which Polo-like kinases recognize crossover designation and phosphorylate SYP-4 thereby stabilizing the SC and making chromosomes less permissive for further DSB formation.

Article and author information

Author details

  1. Saravanapriah Nadarajan

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Talley J Lambert

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisabeth Altendorfer

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jinmin Gao

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael D Blower

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer C Waters

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Monica P Colaiácovo

    Department of Genetics, Harvard Medical School, Boston, United States
    For correspondence
    mcolaiacovo@genetics.med.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01GM072551)

  • Monica P Colaiácovo

Lalor Foundation

  • Saravanapriah Nadarajan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Scott Keeney, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, United States

Version history

  1. Received: November 18, 2016
  2. Accepted: March 23, 2017
  3. Accepted Manuscript published: March 27, 2017 (version 1)
  4. Version of Record published: May 9, 2017 (version 2)

Copyright

© 2017, Nadarajan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,047
    views
  • 548
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Saravanapriah Nadarajan
  2. Talley J Lambert
  3. Elisabeth Altendorfer
  4. Jinmin Gao
  5. Michael D Blower
  6. Jennifer C Waters
  7. Monica P Colaiácovo
(2017)
Polo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop
eLife 6:e23437.
https://doi.org/10.7554/eLife.23437

Share this article

https://doi.org/10.7554/eLife.23437

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.