La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs

  1. Roni M Lahr
  2. Bruno D Fonseca
  3. Gabrielle E Ciotti
  4. Hiba A Al-Ashtal
  5. Jian-Jun Jia
  6. Marius R Niklaus
  7. Sarah P Blagden
  8. Tommy Allain
  9. Andrea J Berman  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Children's Hospital of Eastern Ontario Research Institute, Canada
  3. University of Oxford, United Kingdom

Abstract

The 5’terminal oligopyrimidine (5’TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methyl-guanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5’TOP motif, a cap analog (m7GTP), and a capped cytosine (m7GpppC) resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5’TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5’TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.

Data availability

The following data sets were generated
    1. Lahr and Berman
    (2017) DM15-RNA cocrystal
    Publicly available at the RCSB Protein Data Bank (accession no: 5V7C).
    1. Lahr and Berman
    (2017) DM15-m7GTP cocrystal
    Publicly available at the RCSB Protein Data Bank (accession no: 5V4R).
    1. Lahr and Berman
    (2017) DM15-m7GpppC cocrystal
    Publicly available at the RCSB Protein Data Bank (accession no: 5V87).

Article and author information

Author details

  1. Roni M Lahr

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bruno D Fonseca

    Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Gabrielle E Ciotti

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hiba A Al-Ashtal

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jian-Jun Jia

    Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Marius R Niklaus

    Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah P Blagden

    Department of Oncology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Tommy Allain

    Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrea J Berman

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    ajb190@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1217-7412

Funding

National Institute of General Medical Sciences (R01GM116889)

  • Andrea J Berman

Prostate Cancer Canada (PCC Discovery Grant D2015-02)

  • Bruno D Fonseca
  • Tommy Allain

University of Pittsburgh

  • Roni M Lahr
  • Gabrielle E Ciotti
  • Hiba A Al-Ashtal
  • Andrea J Berman

Samuel and Emma Winters Foundation

  • Andrea J Berman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Lahr et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,983
    views
  • 1,339
    downloads
  • 149
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roni M Lahr
  2. Bruno D Fonseca
  3. Gabrielle E Ciotti
  4. Hiba A Al-Ashtal
  5. Jian-Jun Jia
  6. Marius R Niklaus
  7. Sarah P Blagden
  8. Tommy Allain
  9. Andrea J Berman
(2017)
La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs
eLife 6:e24146.
https://doi.org/10.7554/eLife.24146

Share this article

https://doi.org/10.7554/eLife.24146

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.