La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs

  1. Roni M Lahr
  2. Bruno D Fonseca
  3. Gabrielle E Ciotti
  4. Hiba A Al-Ashtal
  5. Jian-Jun Jia
  6. Marius R Niklaus
  7. Sarah P Blagden
  8. Tommy Alain
  9. Andrea J Berman  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Children's Hospital of Eastern Ontario Research Institute, Canada
  3. University of Oxford, United Kingdom

Abstract

The 5'terminal oligopyrimidine (5'TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methyl-guanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m7GTP), and a capped cytosine (m7GpppC) resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.

Data availability

The following data sets were generated
    1. Lahr and Berman
    (2017) DM15-RNA cocrystal
    Publicly available at the RCSB Protein Data Bank (accession no: 5V7C).
    1. Lahr and Berman
    (2017) DM15-m7GTP cocrystal
    Publicly available at the RCSB Protein Data Bank (accession no: 5V4R).
    1. Lahr and Berman
    (2017) DM15-m7GpppC cocrystal
    Publicly available at the RCSB Protein Data Bank (accession no: 5V87).

Article and author information

Author details

  1. Roni M Lahr

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bruno D Fonseca

    Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Gabrielle E Ciotti

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hiba A Al-Ashtal

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jian-Jun Jia

    Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Marius R Niklaus

    Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah P Blagden

    Department of Oncology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Tommy Alain

    Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrea J Berman

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    ajb190@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1217-7412

Funding

National Institute of General Medical Sciences (R01GM116889)

  • Andrea J Berman

Prostate Cancer Canada (PCC Discovery Grant D2015-02)

  • Bruno D Fonseca

University of Pittsburgh

  • Roni M Lahr
  • Gabrielle E Ciotti
  • Hiba A Al-Ashtal
  • Andrea J Berman

Samuel and Emma Winters Foundation

  • Andrea J Berman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Lahr et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,991
    views
  • 1,340
    downloads
  • 149
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roni M Lahr
  2. Bruno D Fonseca
  3. Gabrielle E Ciotti
  4. Hiba A Al-Ashtal
  5. Jian-Jun Jia
  6. Marius R Niklaus
  7. Sarah P Blagden
  8. Tommy Alain
  9. Andrea J Berman
(2017)
La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs
eLife 6:e24146.
https://doi.org/10.7554/eLife.24146

Share this article

https://doi.org/10.7554/eLife.24146

Further reading

    1. Biochemistry and Chemical Biology
    Parnian Arafi, Sujan Devkota ... Michael S Wolfe
    Research Article

    Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer’s disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a Caenorhabditis elegans model of FAD independently of Aβ production. Here, we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kira A Cozzolino, Lynn Sanford ... Dylan J Taatjes
    Research Article

    Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.